microRNAs and genes associated with the development of atherosclerosis

Authors

  • R. Y. Niyazova Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty
  • I. V. Pinsky Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty
  • S. A. Atambayeva Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Y. Pyrkova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. T. Ivaschenko Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty
  • S. B. Labeit University Medical Centre Mannheim of University of Heidelberg, Germany, Mannheim
        87 35

Keywords:

miRNA, mRNA, binding sites, target genes, atherosclerosis.

Abstract

It was created a database of 212 genes and 39 microRNAs involved in the development of atherosclerosis. Only miR-103a-3p has binding site in mRNA of ADAMTS7 gene with the value of ΔG/ΔGm more than 90%. 39 miRNAs have 118 binding sites in the mRNA genes with the value of ΔG/ΔGm from 90 to 100%. IRS2 gene mRNA contains 17 binding sites for miRNAs. mRNA of LMNA, MTHFR, F11R, LDLR genes have a number of miRNAs binding sites equal to 14, 11, 10 and 9, respectively. miR-619-5p and miR-5096 have completely complementary binding sites in the mRNA of ADAM17 and IL18 genes. miR-619-5p has binding sites in mRNAs of 11 genes. miR-466 has multiple binding sites in the mRNA of five genes. miR-1322 has multiple binding sites in the mRNA of PDE4D, RTN3 genes, and miR-574-5p interacted with multiple sites in the mRNA PPARA gene. miRNAs binding sites in the mRNA of IL18, IL10, LDLR, BRCA1, F11R genes have a value of ΔG/ΔGm equal to 98 - 100%. mRNAs of CDKN1C, SIRT1, TGFB1, APH1B genes contain binding sites with the interaction energy of 127 - 136 kJ/mole. mRNA of CDKN1C gene contains 35 binding sites for miR-762 in CDS.

 

It was created a database of 212 genes and 39 microRNAs involved in the development of atherosclerosis. Only miR-103a-3p has binding site in a protein-coding region of ADAMTS7 gene mRNA in with the value of ΔG/ΔGm more than 90%. 39 miRNAs involved in atherosclerosis have 118 binding sites with the value of ΔG/ΔGm from 90 to 100%. miR-145-3p and miR-663a have eight target genes with the value of ΔG/ΔGm equal to 91-92%. It was revealed 49 target genes associated with the development of atherosclerosis, which have one miRNA binding sites with the ΔG/ΔGm value more than 90%. Ten sites are located in the 5'UTRs, 20 sites - in the CDSs and 19 sites - in the 3'UTRs. miR-1273g-3p with mRNA of ALOX15 gene (98%), miR-3653 with the mRNA of HMGB1 gene (98%) and miR-1273g-3p with mRNA of TFPI gene (98%) have the maximum ΔG/ΔGm value. 93 target genes mRNAs have multiple sites for miRNAs with the ΔG/ΔGm value not less than 90%. mRNA of IRS2 gene contain binding sites of miR-1227-5p, miR-4466, miR-1268a, miR-1268b, miR-3913-5p, miR-4488, miR-1181, miR-4258, miR-3960, miR-7977, miR-5703, miR-4468, miR-7704, miR-4279, miR-6806-5p, miR-6071, miR-3665 miRNAs with the value of ΔG/ΔGm from 90 to 96%, which indicated the strong dependence of gene expression from miRNAs. mRNA of LMNA, MTHFR, F11R, LDLR genes have a number of miRNAs binding sites equal to 14, 11, 10 and 9, respectively. miR-619-5p and miR-5096 have completely complementary binding sites (the value of ΔG/ΔGm equal to 100%) in ADAM17 and IL18 genes mRNAs, respectively. The unique miR-619-5p has binding sites in the mRNAs of TNFSF10, PPARA, PNPLA3, MTHFR, LDLR, ITGA2, IL18, IL10, BRCA1, ADAM33, ADAM17 genes. The unique miR-5096 has binding sites in the mRNAs of TNC, PPARA, ITGA2, IL18, IL10, BRCA1, ANGPT2 genes. The unique miR-1273g-3p bind only with mRNA of NLRP3, ICAM genes. miR-466 has multiple binding sites in the mRNA of TNFSF4, PPARGC1A, PLA2G7, NOS1AP, ICAM1 genes. miR-1322 has multiple binding sites in the mRNA of PDE4D, RTN3 genes, and miR-574-5p bind with multiple sites in the PPARA gene mRNA. miRNAs binding sites in the mRNA IL18, IL10, LDLR, BRCA1, F11R genes have the highest ΔG/ΔGm value equal to 98 - 100%. mRNA of CDKN1C, SIRT1, TGFB1, APH1B genes contain binding sites with high interaction energy equal to 127 - 136 kJ/mole. CDKN1C gene mRNA contains 35 binding sites in the CDS, which certainly makes a special interest in this association mRNA and miR-762. The role of miRNAs and genes in the development of atherosclerosis was studied.

Author Biographies

R. Y. Niyazova, Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty

Ниязова Райгуль Есенгельдиевна, к.б.н., доцент КазНУ им.аль-Фараби, кафедра биотехнологии

I. V. Pinsky, Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty

Пинский Илья Владимирович, магистр, стажер-исследователь НИИ проблем биологии и биотехнологии КазНУ им.аль-Фараби

S. A. Atambayeva, Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty

Атамбаева Шара Алпысбаевна, к.б.н., доцент КазНУ им.аль-Фараби, кафедра биотехнологии

A. Y. Pyrkova, Al-Farabi Kazakh National University, Kazakhstan, Almaty

Пыркова Анна Юрьевна, к.ф.-м.н., доцент КазНУ им.аль-Фараби, кафедра информатики

A. T. Ivaschenko, Biology and biotechnology problems scientific-research institute of the al-Farabi Kazakh National University, Kazakhstan, Almaty

Иващенко Анатолий Тимофеевич, д.б.н., профессор КазНУ им.аль-Фараби, кафедра биотехнологии

S. B. Labeit, University Medical Centre Mannheim of University of Heidelberg, Germany, Mannheim

Лабейт З.Б., PhD Медицинский центр Университета Гейдельберга, Федеративная Республика Германия, г. Мангейм

References

1 Vasdev S., Gill V., Singal P.K. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms // Vascular Health Risk Management. – 2006. – V.2(3). – P.263–276.
2 Araldi E., Suárez Y. MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases // Biochim Biophys Acta. – 2016. – V.1981(16). – P.30012-30009.
3 Xue Y., Wei Z., Ding H., Wang Q., Zhou Z., Zheng S., Zhang Y., Hou D., Liu Y., Zen K., Zhang C.Y., Li J., Wang D., Jiang X. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis // Atherosclerosis. – 2015. – V.241(2). – P.671-681.
4 Samanta S., Balasubramanian S., Rajasingh S., Patel U., Dhanasekaran A., Dawn B., Rajasingh J. MicroRNA: A new therapeutic strategy for cardiovascular diseases // Trends Cardiovas Med. – 2016. - V.26(5). – P.407-419.
5 Davis R.E., Brown K.D., Siebenlist U., Staudt L.M. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells // J Exp Med. – 2001. – V.194(12). – P.1861—1874.
6 Sun S.C. The noncanonical NF-κB pathway // Immunological reviews. – 2012. – V.246 (1). – P.125–140.
7 Lee T.J., Jang J., Kang S., Jin M., Shin H., Kim D.W., Kim B.S. Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment // Biochemical and Biophysical Research Communications. – 2013. – V.430(2). – P.793–797.
8 Kishimoto T.K., Larson R.S., Corbi A.L., Dustin M.L., Staunton D.E., Springer T.A. The leukocyte integrins // Advanced Immunology. – 1989. – V.46. – P.149-182.
9 Пальцев М.А., Иванов А.А. Межклеточные взаимодействия // Медицина. – 1995. – С.224.
10 Wang Y., Sul H.S. Pref-1 Regulates Mesenchymal Cell Commitment and Differentiation through Sox9 // Cell Metabolism. – 2009. – V.9(3). – P.287–302.
11 Sugama S., Conti B. Interleukin-18 and stress // Brain research reviews. - 2008. - V.58 (1). - P.85–95.
12 Keilani S., Sugaya K. Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1 // BMC Dev Biol. – 2008. –V.8(1). – P.69.
13 Bradley J.R. TNF-mediated inflammatory disease // J Pathol. – 2008. – V.214(2). – P.149–160.
14 Hall S.K., Perregaux D.G., Gabel C.A., Woodworth T., Durham L.K., Huizinga T.W., Breedveld F.C., Seymour A.B. Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein // Arthritis Rheum. – 2004. – V.50(6). – P.1976–1983.
15 Murphy J.M., Young I.G. IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor // Vitam Horm. – 2006. – V.74. – P.1–30.
16 Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases: structure, function and inhibition // Biochem J. – 2001. – V.357(3). – P.593–615.
17 Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. MicroRNA regulation of macrophages in human pathologies // J Mol Cell Cardiol. – 2016. – V.94. – P.107-121.
18 Maimaiti A., Maimaiti A., Yang Y., Ma Y. MiR-106b exhibits an anti-angiogenic function by inhibiting STAT3 expression in endothelial cells // Lipids Health Dis. – 2016. – V.15. – P.51.
19 Reddy M.A., Das S., Zhuo C., Jin W., Wang M., Lanting L., Natarajan R. Regulation of Vascular Smooth Muscle Cell Dysfunction Under Diabetic Conditions by miR-504 // Arterioscl Throm Vas. – 2016. – V.36(5). – P.864-873.
20 Welten S.M., Goossens E.A., Quax P.H., Nossent A.Y. The multifactorial nature of microRNAs in vascular remodeling // Cardiovasc Res. – 2016. – V.110(1). – P.6-22.
21 Vacca M., Eusanio D.M., Cariello M., Graziano G., Amore S., Petridis F.D., Orazio A., Salvatore L., Tamburro A., Folesani G., Rutigliano D., Pellegrini F., Sabba C., Palasciano G., Bartolomeo D.R., Moschetta A. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis // Cardiovasc Res. – 2016. – V.109(2). – P.228-239.
22 Thum T., Mayr M. Review focus on the role of microRNA in cardiovascular biology and disease // Cardiovasc Res. – 2012. – V.93(4). – P.543-544.
23 Ouimet M., Ediriweera H.N., Gundra U.M., Sheedy F.J., Ramkhelawon B., Hutchison S.B., Rinehold K., Solingen C., Fullerton M.D., Cecchini K., Rayner K.J., Steinberg G.R., Zamore P.D., Fisher E.A., Loke P., Moore K.J. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis // J Clin Invest. – 2015. – V.125(12). – P.4334-4348.
24 Daimiel-Ruiz L., Klett-Mingo M., Konstantinidou V., Mico V., Aranda J.F., Garcia B., Martínez-Botas J., Davalos A., Fernandez-Hernando C., Ordovas J.M. Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system // Mol Nutr Food Res. – 2015. – V.59(9). – P.1865-1878.
25 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. MiR-3960 binding sites with mRNA of human genes // Bioinformation. – 2014. – V.10(7). – P.423-427.
26 Ivashchenko A., Pyrkova A., Niyazova R. A method for clustering of miRNA sequences using fragmented programming // Bioinformation. – 2016. – V.12(1). – P.15-18.
References
1 Vasdev S, Gill V, Singal PK (2006) Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms, Vascular Health Risk Management, 2(3):263–276. DOI: 10.2147/vhrm.2006.2.3.263
2 Araldi E, Suárez Y (2016) MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases, Biochim Biophys Acta, 1981(16):30012-30019. DOI: 10.1016/j.bbalip.2016.01.013
3 Xue Y, Wei Z, Ding H, Wang Q, Zhou Z, Zheng S, Zhang Y, Hou D, Liu Y, Zen K, Zhang CY, Li J, Wang D, Jiang X (2015) MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis, Atherosclerosis, 241(2):671-681. DOI: 10.1016/j.atherosclerosis.2015.06.031
4 Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B, Rajasingh J (2016) MicroRNA: A new therapeutic strategy for cardiovascular diseases, Trends Cardiovas Med, 26(5):407-419. DOI: 10.1016/j.tcm.2016.02.004
5 Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells, J Exp Med, 194(12):1861—1874. DOI: 10.1084/jem.194.12.1861
6 Sun SC (2012) The noncanonical NF-κB pathway, Immunological reviews, 246(1):125–140. DOI: 10.1111/j.1600-065X.2011.01088.x
7 Lee TJ, Jang J, Kang S, Jin M, Shin H, Kim DW, Kim BS (2013) Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment, Biochemical and Biophysical Research Communications, 430(2):793–797. DOI: 10.1016/j.bbrc.2012.11.067
8 Kishimoto TK, Larson RS, Corbi AL, Dustin ML, Staunton DE, Springer TA (1989) The leukocyte integrins, Advanced Immunology, 46-149. DOI: 10.1007/978-1-4757-9534-9_12
9 Paltsev MA, Ivanov AA (1995) Intercellular communications. Medicine [Mezhkletochnye vzaimodejstvija], 224 P. (In Russian)
10 Wang Y, Sul HS (2009) Pref-1 Regulates Mesenchymal Cell Commitment and Differentiation through Sox9, Cell Metabolism, 9(3):287–302. DOI: 10.1016/j.cmet.2009.01.013
11 Sugama S, Conti B (2008) Interleukin-18 and stress, Brain research reviews, 58 (1): 85–95. DOI:10.1016/j.brainresrev.2007.11.003e
12 Keilani S, Sugaya K (2008) Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1, BMC Dev Biol, 8(1):69. DOI: 10.1186/1471-213X-8-69
13 Bradley JR (2008) TNF-mediated inflammatory disease, J Pathol, 214(2):149–160. DOI: 10.1002/path.2287
14 Hall SK, Perregaux DG, Gabel CA, Woodworth T, Durham LK, Huizinga TW, Breedveld FC, Seymour AB (2004) Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein, Arthritis Rheum, 50(6):1976–1983. DOI: 10.1002/art.20310
15 Murphy JM, Young IG (2006) IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor, Vitam Horm, 74:1–30. DOI: 10.1016/S0083-6729(06)74001-8
16 Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition, Biochem J, 357(3):593–615. DOI: 10.1042/bj3570593
17 Chistiakov DA, Orekhov AN, Bobryshev YV (2016) MicroRNA regulation of macrophages in human pathologies, J Mol Cell Cardiol, 94:107-121. DOI: 10.1016/j.yjmcc.2016.03.015
18 Maimaiti A, Maimaiti A, Yang Y, Ma Y (2016) MiR-106b exhibits an anti-angiogenic function by inhibiting STAT3 expression in endothelial cells, Lipids Health Dis, 15:51. DOI: 10.1186/s12944-016-0216-5
19 Reddy MA, Das S, Zhuo C, Jin W, Wang M, Lanting L, Natarajan R (2016) Regulation of Vascular Smooth Muscle Cell Dysfunction Under Diabetic Conditions by miR-504, Arterioscl Throm Vas, 36(5):864-873. DOI: 10.1161/ATVBAHA.115.306770
20 Welten SM, Goossens EA, Quax PH, Nossent AY (2016) The multifactorial nature of microRNAs in vascular remodeling, Cardiovasc Res, 110(1):6-22. DOI: 10.1093/cvr/cvw039
21 Vacca M, Eusanio DM, Cariello M, Graziano G, Amore S, Petridis FD, Orazio A, Salvatore L, Tamburro A, Folesani G, Rutigliano D, Pellegrini F, Sabba C, Palasciano G, Bartolomeo DR, Moschetta A (2016) Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis, Cardiovasc Res, 109(2):228-239. DOI: 10.1093/cvr/cvv266
22 Thum T, Mayr M (2012) Review focus on the role of microRNA in cardiovascular biology and disease, Cardiovasc Res, 93(4):543-544. DOI: 10.1093/cvr/cvs085
23 Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, Solingen C, Fullerton MD, Cecchini K, Rayner KJ, Steinberg GR, Zamore PD, Fisher EA, Loke P, Moore KJ (2015) MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis, J Clin Invest, 125(12):4334-4348. DOI: 10.1172/JCI81676
24 Daimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Mico V, Aranda JF, Garcia B, Martínez-Botas J, Davalos A, Fernandez-Hernando C, Ordovas JM (2015) Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system, Mol Nutr Food Res, 59(9):1865-1878. DOI: 10.1002/mnfr.201570094
25 Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S (2014) MiR-3960 binding sites with mRNA of human genes, Bioinformation, 10(7):423-427. DOI: .6026/97320630010423
26 Ivashchenko A, Pyrkova A, Niyazova R (2016) A method for clustering of miRNA sequences using fragmented programming, Bioinformation, 12(1):15-18. DOI: 10.6026/97320630012015

Downloads

How to Cite

Niyazova, R. Y., Pinsky, I. V., Atambayeva, S. A., Pyrkova, A. Y., Ivaschenko, A. T., & Labeit, S. B. (2017). microRNAs and genes associated with the development of atherosclerosis. Experimental Biology, 69(4), 100–114. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1242

Issue

Section

МOLECULAR BIOLOGY AND GENETICS

Most read articles by the same author(s)

1 2 > >>