Characteristics of miRNA interaction with 5'UTR, CDS and 3'UTR mRNA candidate genes of myocardial infarction and ischemic heart disease

Авторлар

  • D. Baizhigitova
  • Sh. A. Atambayeva
  • R. E. Niyazova
  • A. T. Ivashchenko Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/eb-2018-3-1340

Аннотация

 

The study of the involvement of miRNAs in the regulation of the expression of candidate genes of myocardial infarction and coronary heart disease will facilitate the development of new effective methods for noninvasive diagnosis of these diseases. Using the MirTarget program to determine the characteristics of the interaction of miRNA with mRNA, the following original results were obtained. The 183 genes involved in the development of MI, 35 genes were associated with 51 miRNAs in the 5'UTR, 53 genes with 94 miRNA in the CDS, and 37 genes with 50 miRNAs in the 3’UTR. 24 genes bind to only one miRNA were arranged in the 5'UTR, 36 genes in the CDS, and 24 genes in the 3'UTR. The remaining mRNAs of the genes involved in the development of MI were associated with two or more miRNAs. Nine genes under the control of miRNAs were bound in the 5'UTR, 21 genes in the CDS, and 15 in the 3'UTR. Most of the interactions occurred at the CDS site. The largest number of binding sites had the mRNA of the CXCR2 and FAIM2 genes in the 3'UTR. Only three genes had binding sites in all regions: AP3D1, GATA2, SEMA3F. MI candidate genes PDED4 was regulated by 13 miRNAs with free energy of binding miRNAs with mRNAs -144 kJ/mole; genes ILF3, GATA2 were regulated by five and three miRNAs respectively  with  the free energy of binding miRNAs with mRNAs -138 kJ/mole; genes TGFBR1 and AP3D1 were regulated by six and five miRNAs with free energy of binding miRNAs with mRNAs -136 kJ/mole and -140 kJ/mole respectively. The 174 genes participating in the development of IHD, 34 genes were associated with 43 miRNAs in the 5'UTR, 55 genes with 90 miRNAs in the CDS, and 35 genes with 53 miRNAs in the 3'UTR. Of them, 23 genes that bound to only one miRNA were located in the 5'UTR region, 34 genes in the CDS, and 19 genes in the 3'UTR. The mRNAs of genes involved in the development of IHD were associated with two or more miRNAs. Eight genes under the control of miRNAs were bound in the 5'UTR, 20 genes in the CDS, and 15 in the 3'UTR. The mRNA of the THRA gene in 5'UTR, the SMARCA4 gene in the CDS, and the LDLR gene in the 3'UTR had the largest number of interaction sites. The binding sites located at 5'UTR had the strongest interaction. Only two genes had binding sites in all sites: CTCF and F2RL3. IHD candidate genes SMARCA4, TGFB1 and  DOCK7 were regulated by seven, five and two miRNAs with free energy of binding miRNAs with mRNAs -140 kJ/mole, -140 kJ/mole and -138 kJ/mole respectively. There were genes characteristic for only one subtype: myocardial infarction - ADRB1, ILF3, GATA2, TGFBR1, AP3D1; ischemic heart disease - SMARCA4, DOCK7, CELSR2, TRIB1. All of the above mentioned ассоциации miRNA с mRNA can be used as the promising markers of myocardial infarction and ischemic heart disease.

    Key words: miRNA, mRNA, myocardial infarction, ischemic heart disease, candidate genes.

Библиографиялық сілтемелер

1 Bye A., Røsjø H, Nauman J., Silva G. et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals // J Mol Cell Cardiol. - 2016. - Vol. 97 - P. 162-8. doi: 10.1016/j.yjmcc.2016.05.009.
2 Cheng M., An S., Li J. Identifying key genes associated with acute myocardial infarction // Medicine (Baltimore). - 2017. - Vol. 96(42). - P. 774. doi: 10.1097/MD.0000000000007741.
3 Xu H., Liu Y. Role of interleukin-10 gene polymorphisms in the development of coronary artery disease in Chinese population // Genet Mol Res. - 2015. - Vol. 14(4). - P.15869-75. doi: 10.4238/2015.
4 Tong Z., Li Q., Zhang J., et al. Association between interleukin 6 and interleukin 16 gene polymorphisms and coronary heart disease risk in a Chinese population // J Int Med Res. - 2013.- Vol. 41(4). P.1049-56. doi: 10.1177/0300060513483405.
5 Zheng YY, Xie X, Ma YT A novel polymorphism (901G > a) of C5L2 gene is associated with coronary artery disease in Chinese Han and Uyghur population // Lipids Health Dis. – 2013. - Sep 28. - 12:139. doi: 10.1186/1476-511X-12-139
6 Ravingerova T., Adameova A., Carnicka S., et al. The role of PPAR in myocardial response to ischemia in normal and diseased heart // Gen Physiol Biophys. - 2011. -Vol. 30(4). - P. 329-41. doi: 10.4149/gpb_2011_04_329.
7 Ravingerová T., Carnická S., Ledvényiová V., et al. Upregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart // Physiol Res. - 2013. - Vol. 62. - Suppl 1:S151-63.
8 Chen Z., Li C., Lin K., et al. MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers? // Anatol J Cardiol. 2018. - 19(2). - P. 140–147.
9 Corsten M., Dennert R., Jochems S., et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease // Circ Cardiovasc Genet. - 2010. - Vol. 3(6). - P. 499-506. doi: 10.1161/CIRCGENETICS.110.957415.
10 Gidlöf O., Smith J., Miyazu K., et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction // BMC Cardiovasc Disord. - 2013. - Vol. 13:12. doi: 10.1186/1471-2261-13-12.
11 Widera C., Gupta S., Lorenzen J., et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome // J Mol Cell Cardiol. - 2011. - Vol. 51(5). - P. 872-5. doi: 10.1016/j.yjmcc.2011.07.011
12 Li C, Chen X, Huang J, Sun Q, Wang L Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction // Eur J Med Res. – 2015. - Jun 5. – P. 20():58
13 D'Alessandra Y., Devanna P., Limana F., et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction // J Eur Heart. - 2010. - Vol. 31 (22). - P. 2765-73. doi: 10.1093/eurheartj/ehq167.
14 Grabmaier U., Clauss S., Gross L. Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction - The SITAGRAMI-miR analysis // Int J Cardiol. - 2017. - Vol. 244 - P. 30-36. doi: 10.1016/j.ijcard.2017.06.054.
15 Devaux Y., Mueller M., Haaf P., et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain // J Intern Med. - 2015. - Vol. 277 (2). - P. 260-71. doi: 10.1111/joim.12183.
16 Coskunpinar E., Cakmak H., Kalkan A., et al. Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction // Gene.- 2016. - Vol. 591 (1). - P. 90-96. doi: 10.1016/j.gene.2016.06.059.
17 Zhang Y., Cheng J., Chen F., et al. Circulating endothelial microparticles and miR-92a in acute myocardial infarction // Biosci Rep. - 2017. - Vol. 37(2). pii: BSR20170047. doi: 10.1042/BSR20170047.
18 Olivieri F., Antonicelli R., Lorenzi M., et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction // Int J Cardiol. - 2013. - Vol. 167(2). - P. 531-6. doi: 10.1016/j.ijcard.2012.01.075.
19 Zhang Y., Liu Y., Liu T., et al. Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction // Eur Rev Med Pharmacol Sci. - 2016. - Vol.20(2). - P.323-9.
20 Zhu J., Yao K., Wang Q., et al. Circulating miR-181a as a Potential Novel Biomarker for Diagnosis of Acute Myocardial Infarction // Cell Physiol Biochem. - 2016. - Vol. 40(6). - P.1591-1602. doi: 10.1159/000453209.
21 Wang K., Zhao X., Liu Y., et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are Promising Novel Biomarkers for Early Diagnosis of Acute Myocardial Infarction // Cell Physiol Biochem. - 2016. - Vol.38(3). - P. 1015-29. doi: 10.1159/000443053.
22 Wang F., Long G., Zhao C.,et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction // PLoS One. - 2014.- Vol. 9(9). - e105734. doi: 10.1371/journal.pone.0105734.
23 Londin E., Lohera P., Telonisa A.G., Quanna K., et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs // PNAS USA. - 2015. - Vol. 112, No. 10. - P. 1106-1115. doi: 10.1073/pnas.1420955112.
24 Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y., Alybayeva A., Baskakov K. Prediction of miRNA binding sites in mRNA // Bioinformation. - 2016. - Vol. 12, No. 4. - P. 237-240.
25 Kool E.T. Hydrogen bonding, base stacking, and steric effects in DNA replication // Annual Review of Biophysics and Biomolecular Structure. - 2001. - Vol.30. - P. 1–22.
26 Leontis N.B., Stombaugh J., Westhof E. The non-Watson- Crick base pairs and their associated isostericity matrices // Nucleic Acids Research. - 2002. - Vol. 30, No. 16. - P. 3497–3531.
27 Пинский И., Лабейт З., Лабейт Д., Иващенко А. Характеристики взаимодействия miRNA c mRNA кандидатных генов сердечно-сосудистых заболеваний человека // Вестник КазНУ. Серия Биологическая – 2017. - №3 (72). - P. 54-69.

References
1. Bye A., Røsjø H, Nauman J., Silva G. et al. (2016) Circulating microRNAs predict future fatal myocardial infarction in healthy individuals. J Mol Cell Cardiol., vol. 97, p. 162-8. doi: 10.1016/j.yjmcc.2016.05.009.
2. Chen Z., Li C., Lin K., et al. (2018) MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers? Anatol J Cardiol., vol. 19(2), p. 140–147. doi:10.14744/AnatolJCardiol.2017.8124
3. Cheng M., An S., Li J. (2017) Identifying key genes associated with acute myocardial infarction. Medicine (Baltimore), vol. 96(42), p. 774. doi: 10.1097/MD.0000000000007741.
4. Corsten M., Dennert R., Jochems S., et al. (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet.,vol. 3(6), p. 499-506. doi: 10.1161/CIRCGENETICS.110.957415.
5. Coskunpinar E., Cakmak H., Kalkan A., et al. (2016) Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene, vol. 591 (1), p. 90-96. doi: 10.1016/j.gene.2016.06.059.
6. D'Alessandra Y., Devanna P., Limana F., et al. (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. J Eur Heart, vol. 31 (22), p. 2765-73. doi: 10.1093/eurheartj/ehq167.
7. Devaux Y., Mueller M., Haaf P., et al. (2015) Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med, vol. 277 (2), p. 260-71. doi: 10.1111/joim.12183.
8. Gidlöf O., Smith J., Miyazu K., et al. (2013) Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord., vol.13:12. doi: 10.1186/1471-2261-13-12.
9. Grabmaier U., Clauss S., Gross L. (2017) Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction - The SITAGRAMI-miR analysis, Int J Cardiol., vol. 244, p. 30-36. doi: 10.1016/j.ijcard.2017.06.054.
10. Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y., Alybayeva A., Baskakov K. (2016) Prediction of miRNA binding sites in mRNA. Bioinformation, vol. 12, No. 4, p. 237-240.
11. Kool E.T. (2001) Hydrogen bonding, base stacking, and steric effects in DNA replication. Annual Review of Biophysics and Biomolecular Structure, vol.30, p. 1–22.
12. Leontis N.B., Stombaugh J., Westhof E. (2002) The non-Watson- Crick base pairs and their associated isostericity matrices. Nucleic Acids Research, vol. 30, no. 16, p. 3497–3531.
13. Li C., Chen X., Huang J., et al. (2015) Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction. Eur J Med Res., vol. 20 (1), p. 58. doi:10.1186/s40001-015-0148-y
14. Londin E., Lohera P., Telonisa A.G., Quanna K., et al. (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. PNAS USA, vol. 112, no. 10, p. 1106-1115. doi: 10.1073/pnas.1420955112.
15. Olivieri F., Antonicelli R., Lorenzi M., et al. (2013) Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol., vol. 167(2), p. 531-6. doi: 10.1016/j.ijcard.2012.01.075.
16. Pinskij I., Labejt Z., Labejt D., Ivashhenko A. (2017) Kharakteristiki vzaimodeystviya miRNA c mRNA genov serdechno-sosudistyh zabolevaniy cheloveka [Characteristics of miRNA interaction with mRNAs of candidate genes of human cardiovascular diseases]. Experimental Biology., no.3, vol.72, pp. 54-69.
17. Ravingerova T., Adameova A., Carnicka S., et al. (2011) The role of PPAR in myocardial response to ischemia in normal and diseased heart. Gen Physiol Biophys., vol. 30(4), p. 329-41. doi: 10.4149/gpb_2011_04_329.
18. Ravingerová T., Carnická S., Ledvényiová V., et al. (2013) Upregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart. Physiol Res., vol. 62, suppl. 1, s151-63.
19. Tong Z., Li Q., Zhang J., et al. (2013) Association between interleukin 6 and interleukin 16 gene polymorphisms and coronary heart disease risk in a Chinese population. J Int Med Res., vol. 41(4), p.1049-56. doi: 10.1177/0300060513483405.
20. Wang F., Long G., Zhao C.,et al. (2014) Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One, vol. 9(9), e105734. doi: 10.1371/journal.pone.0105734.
21. Wang K., Zhao X., Liu Y., et al. (2016) Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are Promising Novel Biomarkers for Early Diagnosis of Acute Myocardial Infarction. Cell Physiol Biochem., vol.38(3), p. 1015-29. doi: 10.1159/000443053.
22. Widera C., Gupta S., Lorenzen J., et al. (2011) Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol., vol.51(5), p.872-5. doi: 10.1016/j.yjmcc.2011.07.011.
23. Xu H., Liu Y. (2015) Role of interleukin-10 gene polymorphisms in the development of coronary artery disease in Chinese population. Genet Mol Res., vol. 14(4)., p.15869-75. doi: 10.4238/2015.
24. Zhang Y., Liu Y., Liu T., et al. (2016) Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction. Eur Rev Med Pharmacol Sci.,vol.20(2), p.323-9.
25. Zhang Y., Cheng J., Chen F., et al. (2017) Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci Rep., vol. 37(2). pii: BSR20170047. doi: 10.1042/BSR20170047.
26. Zheng YY, Xie X, Ma YT A novel polymorphism (901G > a) of C5L2 gene is associated with coronary artery disease in Chinese Han and Uyghur population // Lipids Health Dis. 2013 Sep 28;12:139. doi: 10.1186/1476-511X-12-139
27. Zhu J., Yao K., Wang Q., et al. (2016) Circulating miR-181a as a Potential Novel Biomarker for Diagnosis of Acute Myocardial Infarction. Cell Physiol Biochem., vol. 40(6), p.1591-1602. doi: 10.1159/000453209.

Жүктелулер

Жарияланды

2018-11-17

Шығарылым

Бөлім

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА

Статті цього автора (авторів), які найбільше читають

1 2 3 > >>