Характеристики связывания bta-miRNA с mRNA генов транскрипционных факторов семейства MYB Bos taurus. Вta-miRNA-ның MYB Bos taurus жиынтығы транскрипциондық факторлар гендерінің mRNA-сымен байланысуының сипаттамасы

Авторы

  • A. T. Ivashchenko Национальная нанотехнологическая лаборатория КазНУ имени аль-Фараби
  • A. Zh. Аlybayeva Национальная нанотехнологическая лаборатория КазНУ имени аль-Фараби
  • R. E. Niyazova Национальная нанотехнологическая лаборатория КазНУ имени аль-Фараби,

Ключевые слова:

mRNA, miRNA, гены-мишени, транскрипционные факторы. mRNA, нысана гендер, транскрипциондық факторлар

Аннотация

Изучены взаимодействия 749 miRNA генома Bos taurus с mRNA20 генов транскрипционных факторов семейства MYB. Установлены сайты связывания 58 miRNA с mRNA восьми генов семейства MYB. В mRNA каждого из генов выявлено от трех сайтов связывания для гена MYBL1 до 21 сайта связывания для гена NCOR1. MiR-1260b имела сайты связывания в мRNA генов MIER1, NCOR1, RCOR1. Девять miRNA имели сайты связывания в mRNA двух генов. Величина ΔG/ΔGm, характеризующая степень сродства miRNA к mRNA, изменялась от 85 до 90%. Обсуждается роль bta-miRNA в регуляции экспрессии генов-мишеней транскрипционных факторов семейства MYB. Bos taurus геномының 749 miRNA-сының MYB Bos taurus жиынтығы транскрипциондық факторларының 20 генінің mRNA-сымен байланысуы зерттелді. 58 miRNA-ның сегіз геннің mRNA-мен байланысу сайттары анықталды. Әрбір геннің miRNA-сында MYBL1 гені үшін үш байланысу сайты, NCOR1 гені үшін 21 байла- нысу сайты табылды. Тоғыз miRNA екі геннің mRNA-сында байланысу сайттары анықталды. miRNA-ның mRNA-мен туыстық дәрежесін анықтайтын ΔG/ΔGm, мәні 85%-дан 90%-ға дейін өзгерді. Bta-miRNA-ның MYB жиынтығы транскрипционды факторлар нысана-гендерінің экспрессиясын реттеудегі ролі талқылануда.

Библиографические ссылки

1 Zimin A.V., Delcher A.L., Florea L. et al. A whole-genome assembly of the domestic cow, Bos Taurus // Genome Biol. – 2009. – Vol. 10. – P. 42.

2 Matsuda A., Suzuki Y., Honda G. et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways // Oncogene. 2003. – Vol. 22. – P. 3307-3318.

3 Marhamati D.J., Bellas R.E., Arsura M. et al. A-myb is expressed in bovine vascular smooth muscle cells during the late G1-to-S phase transition and cooperates with c-myc to mediate progression to S phase // Mol Cell Biol. – 1997. – Vol. 17. – P. 2448-2457.

4 Sitzmann J., Noben-Trauth K., Klempnauer K.H. Expression of mouse c-myb during embryonic development // Oncogene. –1995. – Vol. 11. – P. 2273-2279.

5 Oh I.H., Reddy E.P. The myb gene family in cell growth, differentiation and apoptosis // Oncogene. – 1999. – Vol. 18. – P.3017-3033.

6 Clements J.A., Mercer F.C., Paterno G.D., Gillespie L.L. Differential splicing alters subcellular localization of the alpha but not beta isoform of the MIER1 transcriptional regulator in breast cancer cells // PLoS One. – 2012.- Vol. 7. – P. 1371.

7 McCarthy PL, Mercer FC, Savicky MW. et al. Changes in subcellular localisation of MIER1 alpha, a novel oestrogen receptoralpha interacting protein, is associated with breast cancer progression // Br J Cancer. – 2008. – Vol. 99. – P. 639-646.

8 Andrejka L., Wen H., Ashton J. et al. Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex // Proc Natl Acad Sci U S A. – 2011.- Vol.108. – P. 17438-17443.

9 Shibata M., Nakao H., Kiyonari H. et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors // J Neurosci. – 2011. – Vol.31. – P. 3407-3422.

10 Bari A.A., Orazova S.B., Ivashchenko A.T. miR156- and miR171-Binding Sites in the Protein-Coding Sequence of Some Plant Genes // BioMed Res. Int. – 2013. – Vol. 2013. – P. 1-7.

11 Сагайдак А.И., Пинский И.В., Иващенко А.Т., Ренье М., Бари А.А. Связывание miRNA с mRNA генов рост- регулирующих транскрипционных факторов арабидопсиса, риса и кукурузы // Вестник. Серия биологическая. – 2013. – Т. 3, № 59. – С. 289-292.

12 Choi H.K., Yoo J.Y., Jeong M.H. et al. Protein kinase A phosphorylates NCoR to enhance its nuclear translocation and repressive function in human prostate cancer cells // J Cell Physiol. – 2013. – Vol. 228. – P. 1159-1165.

13 Ali A.B., Nin D.S., Tam J., Khan M. Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells // PLoS One. – 2011. – Vol. 6. – P. 268.

14 Zhang Z.H., Yamashita H., Toyama T. et al. Nuclear corepressor 1 expression predicts response to first-line endocrine therapy for breast cancer patients on relapse // Chin Med J (Engl). – 2009. – Vol. 122. – P. 1764-1768.

15 Abedin S.A., Thorne J.L., Battaglia S. et al. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells // Carcinogenesis. – 2009. – Vol. 30. – P. 449-456.

16 Cowger J.J., Zhao Q., Isovic M., Torchia J. Biochemical characterization of the zinc-finger protein 217 transcriptional repressor
complex: identification of a ZNF217 consensus recognition sequence // Oncogene. – 2007. – Vol. 26. – P. 3378-3386.

17 Banck M.S., Li S., Nishio H. et al. The ZNF217 oncogene is a candidate organizer of repressive histone modifiers // Epigenetics.– 2009. – Vol. 4. – P.100-106.

18 Wang Y., Zhang H., Chen Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer // Cell. – 2009. – Vol. 138. – P.660-672.

19 Kim S.S., Kim M.S., Yoo N.J., Lee S.H. Frameshift mutations of a chromatin-remodeling gene SMARCC2 in gastric and colorectal cancers with microsatellite instability // APMIS. – 2013. – Vol. 121. –P.168-169.

20 Moshkin Y.M., Mohrmann L., van Ijcken W.F., Verrijzer C.P. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control // Mol Cell Biol. – 2007. – Vol. 27. – P. 651-661.

21 Inoue H., Giannakopoulos S., Parkhurst C.N., Matsumura T. et al. Target genes of the largest human SWI/SNF complex subunit control cell growth // Biochem J. – 2011. – Vol. 434. – P. 83-92.

22 Bochar D.A., Wang L., Beniya H. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer // Cell. – 2000. – Vol. 102. – P. 257-265.

23 Nagl N.G., Patsialou A., Haines D.S. et al. The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes
is essential for normal cell cycle arrest // Cancer Res. – 2005. – Vol. 65. – P. 9236-9244.

24 Zu Y.F., Wang X.C., Chen Y., Wang JY. et al. Thyroid transcription factor 1 represses the expression of Ki-67 and induces apoptosis in non-small cell lung cancer // Oncol Rep. – 2012. – Vol. 28. – P. 1544-1550.

25 Galliani C.A., Bisceglia M., Lastilla G. et al. TTF-1 in embryonal tumors: an immunohistochemical study of 117 cases // Am J Surg Pathol. – 2011. – Vol. 35. – P. 1422-1425.

26 Fernández-Aceñero M.J., Córdova S., Manzarbeitia F., Medina C. Immunohistochemical profile of urothelial and small cell carcinomas of the bladder // Pathol Oncol Res. – 2011. – Vol. 17. – P. 519-523.

27 Yoon S.O., Kim Y.T., Jung K.C. et al. TTF-1 mRNA-positive circulating tumor cells in the peripheral blood predict poor prognosis in surgically resected non-small cell lung cancer patients // Lung Cancer. – 2011. – Vol. 71. – P. 209-216.

28 Ye J., Hameed O., Findeis-Hosey J.J. et al. Diagnostic utility of PAX8, TTF-1 and napsin A for discriminating metastatic carcinoma from primary adenocarcinoma of the lung // Biotech Histochem. – 2012. – Vol. 87. – P. 30-34

Загрузки

Выпуск

Раздел

Биоинформатика, геномика и протеомика. Физико-химическая биология

Наиболее читаемые статьи этого автора (авторов)

> >>