Interaction of genes and microRNA related to the development of prostate cancer
DOI:
https://doi.org/10.26577/eb-2018-1-1315Кілттік сөздер:
microRNA, mRNA, prostate cancerАннотация
A search for candidate genes and microRNAs associated with the development of prostate cancer was implemented. A database which includes 67 genes associated with the development of prostate cancer was created. The functions of genes was analyzed in a comparative aspect. Some genes are specific to prostate cancer, many of them are participants in various cancers. Expression of the ASAH1, AURKA, BMI1, EPHB2, GBX2 genes leads to stimulation of malignant growth of prostate cancer cells and can potentially used as therapeutic targets of this cancer. A database of microRNAs associated with the development of prostate cancer was created. Specific features of binding of genes involved in the development of prostate cancer with miRNAs, involved in the development of cancer were determined. According to the calculations, mRNAs of 67 genes involved in the development of prostate cancer are associated with nine miRNAs with a ΔG/ΔGm value more than 90%. Sites are located in CDS, 5'UTR and 3'UTR. Some miRNAs have several target genes involved in the development of prostate cancer. For miR-619-5p, miR-574-3p, miR-3960, miR-1285-3p there are multiple sites with ΔG/ΔGm greater than 90%. miR-619-5p has sites with the highest binding energy of 121 kJ/m with ΔG/ΔGm equal to 100% in mRNA of XIAP gene. It is possible binding miR-619-5p with mRNA of AURKA, BRCA1, FMN1, IL10, MYO6, UHRF1BP1 genes, responsible for the development of prostate cancer with a ΔG/ΔGm equal to 98%.
Key words: prostate cancer, gene, microRNA, mRNA, diagnostics.
Библиографиялық сілтемелер
2. Bansal N., et al. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer // Clin Cancer Res. - 2016. - Vol. 22, N 24. - P. 6176–91.
3. Bell E.H., et al. A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy // PLoS One. - 2015. - Vol. 10, N 3. - e0118745. doi: 10.1371/journal.pone.0118745.
4. Brase J.C., et al. Circulating miRNAs are correlated with tumor progression in prostate cancer // Int. J. Cancer. - 2011. - Vol. 128. - P. 608–616.
5. Bryant R.J., et al. Changes in circulating microRNA levels associated with prostate cancer // Br J Cancer. - 2012. - Vol. 106, N 4. - P. 768–74.
6. Camacho L., et al. Acid ceramidase as a therapeutic target in metastatic prostate cancer // J Lipid Res. - 2013. - Vol. 54, N 5. - P. 1207-20. doi: 10.1194/jlr.M032375.
7. Chang C.Y., et al. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer // Int J Mol Sci. - 2015. - Vol. 16, N 2. - P. 4095-120.
8. Chen Zhang-Hui, et al. A Panel of Five Circulating MicroRNAs as Potential Biomarkers for Prostate Cancer // Prostate. - 2012. - Vol. 72, N 13. - P. 1443-52.
9. Chiyomaru T., et al. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer // PloSOne. - 2013. - Vol. 8, N 3. - e58929-58941.
10. Di Leva G., Garofalo M., Croce C.M. MicroRNAs in cancer // Annu Rev Pathol. - 2014. - Vol. 9. - P. 287–314.
11. Ding L., et al. CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy // Cancer Res. - 2014. - Vol. 74, N 7. - P. 2050-61.
12. Fang Y.X., Gao W.Q. Roles of microRNAs during prostatic tumorigenesis and tumor progression // Oncogene. - 2014. - Vol. 33. - P. 135– 47.
13. Farhana Matin, et al. MicroRNA Theranostics in Prostate Cancer // Precision Medicine Clinical Chemistry. - 2016. - Vol. 62, N 10. - P. 1318–33.
14. Gao A.C., Lou W., Isaacs J.T. Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene // Clin Cancer Res. - 2000. - Vol. 6, N 2. - P. 493-7.
15. Griffiths-Jones S., et al. miRBase: microRNA sequences, targets and gene nomenclature // Nucleic Acids Research . - 2006. - Vol. 34. -P. 140-144.
16. Ivashchenko A., et al. The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes // Biomed Research International. - 2014. - Vol. 2014. - P. 1-8.
17. Ivashchenko A., et al. MiR-3960 binding sites with mRNA of human genes // Bioinformation. - 2014. - Vol. 10, N 7. - P. 423-7. DOI: 6026/97320630010423
18. Ivashchenko A., Pyrkova A., Niyazova R. A method for clustering of miRNA sequences using fragmented programming // Bioinformation. - 2016. - Vol. 12, N 1. - P. 15-8. DOI: 10.6026/97320630012015
19. Kasinski A.L., Slack F.J. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy // Nat Rev Cancer 2011. - Vol. 11. - P. 849-64.
20. Kim B., Srivastava S.K., Kim S.H. Caspase-9 as a therapeutic target for treating cancer // Expert Opin Ther Targets. - 2015. - Vol. 19, N 1. - P. 113-27.
21. Kivinummi K., et al. The expression of AURKA is androgen regulated in castration-resistant prostate cancer // Sci Rep. - 2017. - Vol. 7, N 1. - e17978. doi: 10.1038/s41598-017-18210-3.
22. Knyazev E.N., et al. Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer // Bull Exp Biol Med. - 2016. - Vol. 161, N 1. - P. 108-11.
23. Lu Z., et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene // Oncogene. - 2008. - Vol. 27. - P. 4373-9.
24. Mattie M.D., et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies // Mol Cancer. - 2006. - Vol. 5. - P. 24.
25. Mullane S.A., Van Allen E.M. Precision medicine for advanced prostate cancer // Curr Opin Urol. - 2016. - Vol. 26. - P. 231–9.
26. Mussnich P., et al. MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1 // Expert Opin Ther Targets. - 2015. - Vol. 19, N 8. - P. 1017-26.
27. Nielson C.M. et al. Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2 // J Bone Miner Res. - 2016. - Vol. 31, N 12. - P. 2085–2097.
28. Pang Y., Youn, C.Y., Yua, H. MicroRNAs and prostate cancer // Acta Biochim Biophys Sin (Shanghai). - 2010. - Vol. 42. - P. 363-9.
29. Porkka K.P., et al. MicroRNA expression profiling in prostate cancer // Cancer Res. - 2007. - Vol. 67. - P. 6130-5.
30. Seelan R.S, et al. Human acid ceramidase is overexpressed but not mutated in prostate cancer // Genes Chromosomes Cancer. - 2000. - Vol. 9, N 2. - P. 137-46.
31. Shi X.B., et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells // Proc Natl Acad Sci USA. - 2007. - Vol. 104. - P. 19983-8.
32. Shkurnikov M.Y., et al. Plasma Level of hsa-miR-619-5p microRNA Is Associated with Prostatic Cancer Dissemination beyond the Capsule // Bull Exp Biol Med. - 2017. - Vol. 163, N 4. - P. 475-7.
33. Taylor M.A., Schiemann W.P. Therapeutic opportunities for targeting microRNAs in cancer // Mol Cell Ther. - 2014. - Vol. 2. - P. 1–13.
34. Tian S., et al. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 30 un-translated region // Biochem Biophys Res Commun. - 2010. - Vol. 396, N 2. - P. 435–439.
35. Torre L.A, et al. Global cancer statistics // CA Cancer J Clin. - 2012. - Vol. 65. - P. 87–108.
References
1. Atambayeva S., et al. (2017) The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes, BMC Genomics, vol. 18, no.1, pp. 428.
2. Bansal N., et al. (2016) BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer, Clin Cancer Res., vol. 22, no. 24, pp. 6176–91.
3. Bell E.H., et al. (2015) A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy, PLoS One, vol. 10, no 3, e0118745. doi: 10.1371/journal.pone.0118745.
4. Brase J.C., et al. (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer, Int. J. Cancer, vol. 128, pp. 608–616.
5. Bryant R.J., et al. (2012) Changes in circulating microRNA levels associated with prostate cancer, Br J Cancer, vol. 106, no 4, pp. 768–74.
6. Camacho L., et al. (2013) Acid ceramidase as a therapeutic target in metastatic prostate cancer, J Lipid Res., vol. 54, no. 5, pp. 1207-20. doi: 10.1194/jlr.M032375.
7. Chang C.Y., et al. (2015) The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer, Int J Mol Sci., vol. 16, no. 2, pp. 4095-120.
8. Chen Zhang-Hui et al. (2012) A Panel of Five Circulating MicroRNAs as Potential Biomarkers for Prostate Cancer, Prostate, vol. 72, no. 13, pp.1443-52.
9. Chiyomaru T., et al. (2013) Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer, PloSOne, vol. 8, no. 3, e58929-58941.
10. Di Leva G., Garofalo M., Croce C.M. (2014) MicroRNAs in cancer, Annu Rev Pathol., vol. 9, pp. 287–314.
11. Ding L., et al. (2014) CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy, Cancer Res., vol. 74, no. 7, pp. 2050-61.
12. Fang Y.X., and Gao W.Q. (2014) Roles of microRNAs during prostatic tumorigenesis and tumor progression, Oncogene, vol. 33, pp. 135– 47.
13. Farhana Matin, et al. (2016) MicroRNA Theranostics in Prostate Cancer, Precision Medicine Clinical Chemistry, vol. 62, no. 10, pp. 1318–33.
14. Gao A.C., Lou W., Isaacs J.T. (2000) Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene, Clin Cancer Res., vol. 6, no. 2, pp. 493-7.
15. Griffiths-Jones S., et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Research, vol. 34, pp. 140-144.
16. Ivashchenko A., et al. (2014) The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes, Biomed Research International, vol. 2014, pp. 1-8.
17. Ivashchenko A., et al. (2014) MiR-3960 binding sites with mRNA of human genes, Bioinformation, vol. 10, no.7, pp. 423-7. DOI: 6026/97320630010423
18. Ivashchenko A., Pyrkova A., Niyazova R. (2016) A method for clustering of miRNA sequences using fragmented programming, Bioinformation, vol. 12, no. 1, pp. 15-8. DOI: 10.6026/97320630012015
19. Kasinski A.L., Slack F.J. (2011) Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy, Nat Rev Cancer, vol. 11, pp. 849-64.
20. Kim B., Srivastava S.K., Kim S.H. (2015) Caspase-9 as a therapeutic target for treating cancer, Expert Opin Ther Targets, vol. 19, no. 1, pp. 113-27.
21. Kivinummi K., et al. (2017) The expression of AURKA is androgen regulated in castration-resistant prostate cancer, Sci Rep., vol. 7, no.1, e17978. doi: 10.1038/s41598-017-18210-3.
22. Knyazev E.N., et al. (2016) Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer, Bull Exp Biol Med., vol. 161, no.1, pp. 108-11.
23. Lu Z., et al. (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene, Oncogene, vol. 27, pp. 4373-9.
24. Mattie M.D., et al. (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies, Mol Cancer, vol. 5, pp. 24.
25. Mullane S.A., and Van Allen E.M. (2016) Precision medicine for advanced prostate cancer, Curr Opin Urol., vol. 26, pp. 231–9.
26. Mussnich P., et al. (2015) MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1, Expert Opin Ther Targets, vol. 19, no. 8, pp. 1017-26.
27. Nielson C.M. et al. (2016) Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2, J Bone Miner Res., vol. 31, no. 12, pp. 2085–2097.
28. Pang Y., Young C.Y., Yuan H. (2010) MicroRNAs and prostate cancer, Acta Biochim Biophys Sin (Shanghai), vol. 42, pp. 363-9.
29. Porkka K.P., et al. (2007) MicroRNA expression profiling in prostate cancer, Cancer Res., vol. 67, pp. 6130-5.
30. Seelan R.S, et al. (2000) Human acid ceramidase is overexpressed but not mutated in prostate cancer, Genes Chromosomes Cancer, vol. 9, no. 2, pp. 137-46.
31. Shi X.B., et al. (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells”, Proc Natl Acad Sci USA 104: 19983-8.
32. Shkurnikov M.Y., et al. (2017) Plasma Level of hsa-miR-619-5p microRNA Is Associated with Prostatic Cancer Dissemination beyond the Capsule, Bull Exp Biol Med., vol. 163, no.4, pp. 475-7.
33. Taylor M.A., Schiemann W.P. (2014) Therapeutic opportunities for targeting microRNAs in cancer, Mol Cell Ther., vol. 2, pp. 1–13.
34. Tian S., et al. (2010) MicroRNA-1285 inhibits the expression of p53 by directly targeting its 30 un-translated region, Biochem Biophys Res Commun., vol. 396, no.2, pp. 435–439.
35. Torre L.A, et al. (2012) Global cancer statistics, CA Cancer J Clin., vol. 65, pp. 87–108.