Взаимодействие генов и microRNA, связанных с развитием рака простаты

Авторы

  • M. Ormanova Казахский национальный университет имени аль-Фараби, Казахстан, г. Алматы
  • R. Niyazova Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы
  • Sh. Atambaeva Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы
  • A. Ivashchenko Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы

DOI:

https://doi.org/10.26577/eb-2018-1-1315
        93 55

Ключевые слова:

рак простаты, ген, microRNA, mRNA, диагностика.

Аннотация

Проведен поиск генов-кандидатов и микроРНК, связанных с развитием рака простаты. Создана база данных по генам, включающая 67 генов, связанных с развитием рака простаты. Проанализированы в сравнительном аспекте функции этих генов. Некоторые гены являются специфическими к раку простаты, многие являются участниками разных онкологических заболеваний. Экспрессия генов ASAH1, AURKA, BMI1, EPHB2, GBX2 приводит к стимуляции злокачественного роста клеток рака предстательной железы и потенциально могут служить терапевтическими мишенями данного онкологического заболевания. Создана база данных по микроРНК, связанных с развитием рака простаты. Определены особенности связывания генов, участвующих в развитии рака простаты с miRNA, принимающих участие в развитии рака. Согласно проведенным расчетам, mRNA 67 генов, участвующих в развитии рака простаты, связываются с девятью miRNA с высокой энергией связывания. Сайты располагаются в CDS, 5'UTR и 3'UTR. Некоторые miRNA имеют несколько генов мишеней, участвующих в развитии рака простаты. Для miR-619-5p, miR-574-3p, miR-3960, miR-1285-3p имеются множественные сайты с ΔG/ΔGm более 90%. miR-619-5p имеет сайты с наибольшей энергией связывания 121 kJ/m с ΔG/ΔGm равным 100% в mRNA гена XIAP. C ΔG/ΔGm равным 98% возможно связывание miR-619-5p с mRNA генов AURKA, BRCA1, FMN1, IL10, MYO6, UHRF1BP1, ответственных за развитие рака простаты.

Ключевые слова: рак простаты, ген, microRNA,  mRNA, диагностика.

Библиографические ссылки

1. Atambayeva S., et al. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes // BMC Genomics. - 2017. - Vol. 18, N 1. - P. 428.
2. Bansal N., et al. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer // Clin Cancer Res. - 2016. - Vol. 22, N 24. - P. 6176–91.
3. Bell E.H., et al. A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy // PLoS One. - 2015. - Vol. 10, N 3. - e0118745. doi: 10.1371/journal.pone.0118745.
4. Brase J.C., et al. Circulating miRNAs are correlated with tumor progression in prostate cancer // Int. J. Cancer. - 2011. - Vol. 128. - P. 608–616.
5. Bryant R.J., et al. Changes in circulating microRNA levels associated with prostate cancer // Br J Cancer. - 2012. - Vol. 106, N 4. - P. 768–74.
6. Camacho L., et al. Acid ceramidase as a therapeutic target in metastatic prostate cancer // J Lipid Res. - 2013. - Vol. 54, N 5. - P. 1207-20. doi: 10.1194/jlr.M032375.
7. Chang C.Y., et al. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer // Int J Mol Sci. - 2015. - Vol. 16, N 2. - P. 4095-120.
8. Chen Zhang-Hui, et al. A Panel of Five Circulating MicroRNAs as Potential Biomarkers for Prostate Cancer // Prostate. - 2012. - Vol. 72, N 13. - P. 1443-52.
9. Chiyomaru T., et al. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer // PloSOne. - 2013. - Vol. 8, N 3. - e58929-58941.
10. Di Leva G., Garofalo M., Croce C.M. MicroRNAs in cancer // Annu Rev Pathol. - 2014. - Vol. 9. - P. 287–314.
11. Ding L., et al. CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy // Cancer Res. - 2014. - Vol. 74, N 7. - P. 2050-61.
12. Fang Y.X., Gao W.Q. Roles of microRNAs during prostatic tumorigenesis and tumor progression // Oncogene. - 2014. - Vol. 33. - P. 135– 47.
13. Farhana Matin, et al. MicroRNA Theranostics in Prostate Cancer // Precision Medicine Clinical Chemistry. - 2016. - Vol. 62, N 10. - P. 1318–33.
14. Gao A.C., Lou W., Isaacs J.T. Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene // Clin Cancer Res. - 2000. - Vol. 6, N 2. - P. 493-7.
15. Griffiths-Jones S., et al. miRBase: microRNA sequences, targets and gene nomenclature // Nucleic Acids Research . - 2006. - Vol. 34. -P. 140-144.
16. Ivashchenko A., et al. The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes // Biomed Research International. - 2014. - Vol. 2014. - P. 1-8.
17. Ivashchenko A., et al. MiR-3960 binding sites with mRNA of human genes // Bioinformation. - 2014. - Vol. 10, N 7. - P. 423-7. DOI: 6026/97320630010423
18. Ivashchenko A., Pyrkova A., Niyazova R. A method for clustering of miRNA sequences using fragmented programming // Bioinformation. - 2016. - Vol. 12, N 1. - P. 15-8. DOI: 10.6026/97320630012015
19. Kasinski A.L., Slack F.J. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy // Nat Rev Cancer 2011. - Vol. 11. - P. 849-64.
20. Kim B., Srivastava S.K., Kim S.H. Caspase-9 as a therapeutic target for treating cancer // Expert Opin Ther Targets. - 2015. - Vol. 19, N 1. - P. 113-27.
21. Kivinummi K., et al. The expression of AURKA is androgen regulated in castration-resistant prostate cancer // Sci Rep. - 2017. - Vol. 7, N 1. - e17978. doi: 10.1038/s41598-017-18210-3.
22. Knyazev E.N., et al. Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer // Bull Exp Biol Med. - 2016. - Vol. 161, N 1. - P. 108-11.
23. Lu Z., et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene // Oncogene. - 2008. - Vol. 27. - P. 4373-9.
24. Mattie M.D., et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies // Mol Cancer. - 2006. - Vol. 5. - P. 24.
25. Mullane S.A., Van Allen E.M. Precision medicine for advanced prostate cancer // Curr Opin Urol. - 2016. - Vol. 26. - P. 231–9.
26. Mussnich P., et al. MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1 // Expert Opin Ther Targets. - 2015. - Vol. 19, N 8. - P. 1017-26.
27. Nielson C.M. et al. Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2 // J Bone Miner Res. - 2016. - Vol. 31, N 12. - P. 2085–2097.
28. Pang Y., Youn, C.Y., Yua, H. MicroRNAs and prostate cancer // Acta Biochim Biophys Sin (Shanghai). - 2010. - Vol. 42. - P. 363-9.
29. Porkka K.P., et al. MicroRNA expression profiling in prostate cancer // Cancer Res. - 2007. - Vol. 67. - P. 6130-5.
30. Seelan R.S, et al. Human acid ceramidase is overexpressed but not mutated in prostate cancer // Genes Chromosomes Cancer. - 2000. - Vol. 9, N 2. - P. 137-46.
31. Shi X.B., et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells // Proc Natl Acad Sci USA. - 2007. - Vol. 104. - P. 19983-8.
32. Shkurnikov M.Y., et al. Plasma Level of hsa-miR-619-5p microRNA Is Associated with Prostatic Cancer Dissemination beyond the Capsule // Bull Exp Biol Med. - 2017. - Vol. 163, N 4. - P. 475-7.
33. Taylor M.A., Schiemann W.P. Therapeutic opportunities for targeting microRNAs in cancer // Mol Cell Ther. - 2014. - Vol. 2. - P. 1–13.
34. Tian S., et al. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 30 un-translated region // Biochem Biophys Res Commun. - 2010. - Vol. 396, N 2. - P. 435–439.
35. Torre L.A, et al. Global cancer statistics // CA Cancer J Clin. - 2012. - Vol. 65. - P. 87–108.

References

1. Atambayeva S., et al. (2017) The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes, BMC Genomics, vol. 18, no.1, pp. 428.
2. Bansal N., et al. (2016) BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer, Clin Cancer Res., vol. 22, no. 24, pp. 6176–91.
3. Bell E.H., et al. (2015) A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy, PLoS One, vol. 10, no 3, e0118745. doi: 10.1371/journal.pone.0118745.
4. Brase J.C., et al. (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer, Int. J. Cancer, vol. 128, pp. 608–616.
5. Bryant R.J., et al. (2012) Changes in circulating microRNA levels associated with prostate cancer, Br J Cancer, vol. 106, no 4, pp. 768–74.
6. Camacho L., et al. (2013) Acid ceramidase as a therapeutic target in metastatic prostate cancer, J Lipid Res., vol. 54, no. 5, pp. 1207-20. doi: 10.1194/jlr.M032375.
7. Chang C.Y., et al. (2015) The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer, Int J Mol Sci., vol. 16, no. 2, pp. 4095-120.
8. Chen Zhang-Hui et al. (2012) A Panel of Five Circulating MicroRNAs as Potential Biomarkers for Prostate Cancer, Prostate, vol. 72, no. 13, pp.1443-52.
9. Chiyomaru T., et al. (2013) Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer, PloSOne, vol. 8, no. 3, e58929-58941.
10. Di Leva G., Garofalo M., Croce C.M. (2014) MicroRNAs in cancer, Annu Rev Pathol., vol. 9, pp. 287–314.
11. Ding L., et al. (2014) CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy, Cancer Res., vol. 74, no. 7, pp. 2050-61.
12. Fang Y.X., and Gao W.Q. (2014) Roles of microRNAs during prostatic tumorigenesis and tumor progression, Oncogene, vol. 33, pp. 135– 47.
13. Farhana Matin, et al. (2016) MicroRNA Theranostics in Prostate Cancer, Precision Medicine Clinical Chemistry, vol. 62, no. 10, pp. 1318–33.
14. Gao A.C., Lou W., Isaacs J.T. (2000) Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene, Clin Cancer Res., vol. 6, no. 2, pp. 493-7.
15. Griffiths-Jones S., et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Research, vol. 34, pp. 140-144.
16. Ivashchenko A., et al. (2014) The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes, Biomed Research International, vol. 2014, pp. 1-8.
17. Ivashchenko A., et al. (2014) MiR-3960 binding sites with mRNA of human genes, Bioinformation, vol. 10, no.7, pp. 423-7. DOI: 6026/97320630010423
18. Ivashchenko A., Pyrkova A., Niyazova R. (2016) A method for clustering of miRNA sequences using fragmented programming, Bioinformation, vol. 12, no. 1, pp. 15-8. DOI: 10.6026/97320630012015
19. Kasinski A.L., Slack F.J. (2011) Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy, Nat Rev Cancer, vol. 11, pp. 849-64.
20. Kim B., Srivastava S.K., Kim S.H. (2015) Caspase-9 as a therapeutic target for treating cancer, Expert Opin Ther Targets, vol. 19, no. 1, pp. 113-27.
21. Kivinummi K., et al. (2017) The expression of AURKA is androgen regulated in castration-resistant prostate cancer, Sci Rep., vol. 7, no.1, e17978. doi: 10.1038/s41598-017-18210-3.
22. Knyazev E.N., et al. (2016) Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer, Bull Exp Biol Med., vol. 161, no.1, pp. 108-11.
23. Lu Z., et al. (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene, Oncogene, vol. 27, pp. 4373-9.
24. Mattie M.D., et al. (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies, Mol Cancer, vol. 5, pp. 24.
25. Mullane S.A., and Van Allen E.M. (2016) Precision medicine for advanced prostate cancer, Curr Opin Urol., vol. 26, pp. 231–9.
26. Mussnich P., et al. (2015) MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1, Expert Opin Ther Targets, vol. 19, no. 8, pp. 1017-26.
27. Nielson C.M. et al. (2016) Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2, J Bone Miner Res., vol. 31, no. 12, pp. 2085–2097.
28. Pang Y., Young C.Y., Yuan H. (2010) MicroRNAs and prostate cancer, Acta Biochim Biophys Sin (Shanghai), vol. 42, pp. 363-9.
29. Porkka K.P., et al. (2007) MicroRNA expression profiling in prostate cancer, Cancer Res., vol. 67, pp. 6130-5.
30. Seelan R.S, et al. (2000) Human acid ceramidase is overexpressed but not mutated in prostate cancer, Genes Chromosomes Cancer, vol. 9, no. 2, pp. 137-46.
31. Shi X.B., et al. (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells”, Proc Natl Acad Sci USA 104: 19983-8.
32. Shkurnikov M.Y., et al. (2017) Plasma Level of hsa-miR-619-5p microRNA Is Associated with Prostatic Cancer Dissemination beyond the Capsule, Bull Exp Biol Med., vol. 163, no.4, pp. 475-7.
33. Taylor M.A., Schiemann W.P. (2014) Therapeutic opportunities for targeting microRNAs in cancer, Mol Cell Ther., vol. 2, pp. 1–13.
34. Tian S., et al. (2010) MicroRNA-1285 inhibits the expression of p53 by directly targeting its 30 un-translated region, Biochem Biophys Res Commun., vol. 396, no.2, pp. 435–439.
35. Torre L.A, et al. (2012) Global cancer statistics, CA Cancer J Clin., vol. 65, pp. 87–108.

Загрузки

Как цитировать

Ormanova, M., Niyazova, R., Atambaeva, S., & Ivashchenko, A. (2018). Взаимодействие генов и microRNA, связанных с развитием рака простаты. Вестник КазНУ. Серия биологическая, 74(1), 52–61. https://doi.org/10.26577/eb-2018-1-1315

Выпуск

Раздел

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА

Наиболее читаемые статьи этого автора (авторов)