Особенности связывания miRNA с mRNA кандидатных генов субтипов рака молочной железы

Авторы

  • D. Aisina Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы
  • R. Niyazova Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы
  • Sh. Atambayeva Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы
  • E. Imyanitov Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова, Россия, г. Санкт-Петербург
  • A. Ivashchenko Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы

DOI:

https://doi.org/10.26577/EB-2017-4-1302

Ключевые слова:

miRNA, mRNA, субтипы рака молочной железы, гены-мишени.

Аннотация

Для выявления ассоциаций miRNA и mRNA их генов мишеней изучены характеристики взаимодействия miRNA и mRNA кандидатных генов четырех субтипов рака молочной железы. Половина кандидатных генов субтипа triple-negative имели сайты связывания для нескольких miRNA. mRNA гена АТМ содержала семь сайтов связывания для miR-5095, miR-619-5p, miR-5096, miR-5585-3р, miR-1273а, miR-1273g-3p, которые все связываются в 3'UTR. mRNA гена AXL, рецептора тирозин киназы,  имела сайты связывания для пяти miRNA, которые локализованы в 3'UTR, CDS и 5'UTR. Из пяти miRNA наибольшей эффективностью регуляции экспрессии протоонкогена CBL может обладать miR-1908-3p. mRNA гена СЕАСАМ5 содержала сайты связывания miR-5095, miR-619-5p, miR-5585-3р с высокой степенью комплементарности. mRNA генов F2RL1, IAPP имеют сайты связывания преимущественно для  miR-5095, miR-619-5p, miR-5585-3р, miR-5096. На основании полученных данных в качестве маркеров необходимо контролировать экспрессию кандидатных генов субтипа triple-negative с miR-5095, miR-619-5p, miR-5585-3р, miR-5096 и miR-1273а, miR-1273е, miR-1273g-3p. Высокая величина свободной энергии связывания выявлена для пар miR-6089 и mRNA RUNX1 и SFN - кандидатных генов субтипа triple-negative. mRNA генов IL11, MAGEA10 и STMN1 имели сайты связывания miR-619-5p и miR-1273a, miR-1273d, miR-1273e, miR-1273f.

mRNA кандидатных генов субтипа her2 ADAM17, AURKA и BRCA2 сильно связывают miR-619-5p. mRNA гена BRIP1 имеет сайты miR-1285-5p, miR-5095, miR-619-5p, miR-5585-3p, miR-1273a, miR-1273g-3p. mRNA гена CDK6 имеет сайты связывания для семейства miR-548 и множественные сайты для miR-466. Наличие в mRNA гена CDK6 таких сайтов связывания в несколько раз увеличивает вероятность ее взаимодействия с этими miRNA. Ключевой кандидатный ген ERBB3 субтипа her2 взаимодействует с miR-619-5p с высокой комплементарностью. С mRNA гена MAZ могут связываться 12 miRNA, сайты связывания которых расположены в 5'UTR и CDS. С mRNA кандидатных генов субтипа luminal A,B связывались: гена HMGA2 - пять miRNA,  гена MAPT - шесть miRNA, гена SMAD3 – четыре miRNA, гена TGFB1 – шесть miRNA. mRNA генов TGFB1 и SMAD3 имели соответственно четыре и три эффективных сайтов связывания miR-6089. Особенностью кандидатных генов субтипа luminal A,B является отсутствие в их mRNA сайтов связывания уникальных miRNA семейства miR-1273 и группы miR-5095, miR-619-5p, miR-5585-3р, miR-5096, miR-1285-5p.

Библиографические ссылки

1 Atambayeva S., Niyazova R., Ivashchenko A., Pyrkova A., Pinsky I., Akimniyazova A., Labeit S. (2017) The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes, BMC Genomics, vol. 18, no. 1, p. 428. doi: 10.1186/s12864-017-3811-6.
2 Balz L.M., Bartkowiak K., Andreas A., Pantel K., Niggemann B., et al. (2012) The interplay of HER2/HER3/PI3K and EGFR/HER2/PLC-γ1 signalling in breast cancer cell migration and dissemination, J Pathol, vol. 227, no. 2, pp. 234-44. doi: 10.1002/path.3991.
3 Blakeman V., Williams J.L., Meng Q.J., Streuli C.H. (2016) Circadian clocks and breast cancer, Breast Cancer Research, vol. 18, p. 89. doi: 10.1186/s13058-016-0743-
4 Bonora M., Wieckowsk M.R., Chinopoulos C., Kepp O., Kroemer G., et al. (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition, Oncogene, vol. 34, no. 12, p. 1608. doi: 10.1038/onc.2014.462.
5 Boudreau A., Tanner K., Wang D., Geyer F.C., Reis-Filho J.S., et al. (2013) 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion, Proc Natl Acad Sci U S A, vol. 110, no. 41, pp. e3937-44. doi: 10.1073/pnas.1315022110.
6 Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. (2016) MicroRNA regulation of macrophages in human pathologies, J Mol Cell Cardiol, vol. 94, pp. 107-121. doi: 10.1016/j.yjmcc.2016.03.015
7 Couch F.J., Sinilnikova O., Vierkant R.A. (2007) AURKA F31I polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a consortium of investigators of modifiers of BRCA1/2 study, Cancer Epidemiol Biomarkers Prev, vol. 16, no. 7, pp. 1416-21.
8 Ergün S., Ulasli M., Igci Y.Z., Igci M., Kırkbes S., et al. (2015) The association of the expression of miR-122-5p and its target ADAM10 with human breast cancer, Mol Biol Rep, vol. 42, no. 2, pp. 497-505. doi: 10.1007/s11033-014-3793-2.
9 Golmohammadi R., Namazi M.J., Going J.J., Derakhshan M.H. (2017) A single nucleotide polymorphism in codon F31I and V57I of the AURKA gene in invasive ductal breast carcinoma in Middle East, Medicine (Baltimore), vol. 96, no. 37. p:e7933. doi: 10.1097/MD.0000000000007933.
10 Grabinski N., Möllmann K., Milde-Langosch K., Müller V., Schumacher U., et al. (2014) AKT3 regulates ErbB2, ErbB3 and estrogen receptor α expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice, Cell Signal, vol. 26, no. 5, pp. 1021-9. doi: 10.1016/j.cellsig.2014.01.018.
11 Hannafon B.N., Trigoso Y.D., Calloway C.L., Zhao Y.D., Lum D.H., et al. (2016) Plasma exosome microRNAs are indicative of breast cancer, Breast Cancer Research, vol. 18, p. 90. doi: 10.1186/s13058-016-0753-x.
12 Hayes D.A., Kunde D.A., Taylor R.L., Pyecroft S.B., Sohal S.S., Snow E.T. (2017) ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1), PLoS One, vol. 12, no. 6, p. e0177919. doi: 10.1371/journal.pone.0177919.
13 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. (2014a) MiR-3960 binding sites with mRNA of human genes, Bioinformation, vol. 10, no. 7, pp. 423-427. doi: 10.6026/97320630010423.
14 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva Sh. (2014) The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes, Biomed Research International, vol. 2014, pp. e8.
15 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R. (2014) Binding Sites of miR-1273 Family on the mRNA of Target Genes , Biomed Research International, vol. 2014, pp. e11.
16 Jo S.J., Park P.G., Cha H.R., Ahn S.G., Kim M.J., et al. (2017) Cellular inhibitor of apoptosis protein 2 promotes the epithelial-mesenchymal transition in triple-negative breast cancer cells through activation of the AKT signaling pathway, Oncotarget, vol. 8, no. 45, pp. 78781-78795. doi: 10.18632/oncotarget.20227.
17 Johnson J., Thijssen B., McDermott U., Garnett M., Wessels L.F., Bernards R. (2016) Targeting the RB-E2F pathway in breast cancer, Oncogene, vol. 35, no. 37, pp. 4829-35. doi: 10.1038/onc.2016.32.
18 Koutras A.K., Fountzilas G., Kalogeras K.T., Starakis I., Iconomou G., Kalofonos H.P. (2010) The upgraded role of HER3 and HER4 receptors in breast cancer, Crit Rev Oncol Hematol., vol. 74, no. 2, pp. 73-8. doi: 10.1016/j.critrevonc.2009.04.011.
19 Krishnan P., Ghosh S., Wang B., Li D., Narasimhan A, et al. (2015) Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer, BMC Genomics, vol. 16, p. 735. doi: 10.1186/s12864-015-1899-0.
20 Lee S.T., Feng M., Wei Y., Li Z., Qiao Y., et al. (2013) Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis, Proc Natl Acad Sci U S A, vol. 110, no. 27, pp. 11121-6.
21 Li H.Y., Liang J.L., Kuo Y.L., Lee H.H., Calkins M.J., et al. (2017) miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer, Breast Cancer Research, vol. 19, p. 133. doi: 10.1186/s13058-017-0918-2
22 MacFarlane L.A., Murphy P.R. (2010) MicroRNA: Biogenesis, Function and Role in Cancer, Curr Genomics, vol. 11, no. 7, pp. 537-561. doi: 10.2174/138920210793175895
23 Mota J.M., Collier K.A., Barros Costa R.L., Taxter T., Kalyan A., et al. (2017) A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer, Oncotarget, vol. 8, no. 51, pp. 89284-89306. doi: 10.18632/oncotarget.18467.
24 Pan H., He Z., Ling L., Ding Q., Chen L., Zha X., et al. (2014) Reproductive factors and breast cancer risk among BRCA1 or BRCA2 mutation carriers: results from ten studies, Cancer Epidemiol, vol. 38, no. 1, pp. 1-8. doi: 10.1016/j.canep.2013.11.004.
25 Pham D.H., Kim J.S., Kim S.K., Shin D.J., Uong N.T., et al. (2017) Effects of ADAM10 and ADAM17 Inhibitors on Natural Killer Cell Expansion and Antibody-dependent Cellular Cytotoxicity Against Breast Cancer Cells In Vitro, Anticancer Res, vol. 37, no. 10, pp. 5507-5513.
26 Yu Z.H., Lun S.M., He R., Tian H.P., Huang H.J., et al. (2017) Dual function of MAZ mediated by FOXF2 in basal-like breast cancer: Promotion of proliferation and suppression of progression, Cancer Lett, vol. 402, pp. 142-152. doi: 10.1016/j.canlet.2017.05.020.
27 Wang J., Song C., Tang H., Zhang C., Tang J., et al. (2017) miR-629-3p may serve as a novel biomarker and potential therapeutic target for lung metastases of triple-negative breast cancer, Breast Cancer Research, vol. 19, p. 72. doi: 10.1186/s13058-017-0865-y
28 Wang W., Xu X., Tian B., Wang Y., Du L., et al. (2017) The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer, Clin Chim Acta, vol. 470, pp. 51-55. doi: 10.1016/j.cca.2017.04.023.
29 Wu Y., Zhang Y., Wang M., Li Q., Qu Z., et al. (2013) Downregulation of HER3 by a novel antisense oligonucleotide, EZN-3920, improves the antitumor activity of EGFR and HER2 tyrosine kinase inhibitors in animal models, Mol Cancer Ther., vol. 12, no. 4, pp. 427-37. doi: 10.1158/1535-7163.MCT-12-0838.
30 Zhang X., Li Q., Zhao H., Ma L., Meng T., et al. (2017) Pathological expression of tissue factor confers promising antitumor response to a novel therapeutic antibody SC1 in triple negative breast cancer and pancreatic adenocarcinoma, Oncotarget, vol. 8, no. 35, pp. 59086-59102. doi: 10.18632/oncotarget.19175


References

1 Atambayeva S., Niyazova R., Ivashchenko A., Pyrkova A., Pinsky I., Akimniyazova A., Labeit S. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes // BMC Genomics. - 2017. - Vol. 18, No 1. - P. 428. doi: 10.1186/s12864-017-3811-6.
2 Balz L.M., Bartkowiak K., Andreas A., Pantel K., Niggemann B., et al. The interplay of HER2/HER3/PI3K and EGFR/HER2/PLC-γ1 signalling in breast cancer cell migration and dissemination // J Pathol. - 2012. - Vol. 227, No 2. - P. 234-44. doi: 10.1002/path.3991.
3 Blakeman V., Williams J.L., Meng Q.J., Streuli C.H. Circadian clocks and breast cancer // Breast Cancer Research. - 2016. - Vol. 18. - P. 89. doi: 10.1186/s13058-016-0743-
4 Bonora M., Wieckowsk M.R., Chinopoulos C., Kepp O., Kroemer G., et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition // Oncogene. - 2015. - Vol. 34, No 12. - P. 1608. doi: 10.1038/onc.2014.462.
5 Boudreau A., Tanner K., Wang D., Geyer F.C., Reis-Filho J.S., et al. 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion // Proc Natl Acad Sci U S A. - 2013. - Vol. 110, No 41. - P. e3937-44. doi: 10.1073/pnas.1315022110.
6 Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. MicroRNA regulation of macrophages in human pathologies // J Mol Cell Cardiol. - 2016. - Vol. 94. - P. 107-121. doi: 10.1016/j.yjmcc.2016.03.015
7 Couch F.J., Sinilnikova O., Vierkant R.A. AURKA F31I polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a consortium of investigators of modifiers of BRCA1/2 study // Cancer Epidemiol Biomarkers Prev. - 2007. - Vol. 16, No 7. - P. 1416-21.
8 Ergün S., Ulasli M., Igci Y.Z., Igci M., Kırkbes S., et al. The association of the expression of miR-122-5p and its target ADAM10 with human breast cancer // Mol Biol Rep. - 2015 - Vol. 42, No 2. - P. 497-505. doi: 10.1007/s11033-014-3793-2.
9 Golmohammadi R., Namazi M.J., Going J.J., Derakhshan M.H. A single nucleotide polymorphism in codon F31I and V57I of the AURKA gene in invasive ductal breast carcinoma in Middle East // Medicine (Baltimore). - 2017. - Vol. 96, No 37. - P. e7933. doi: 10.1097/MD.0000000000007933.
10 Grabinski N., Möllmann K., Milde-Langosch K., Müller V., Schumacher U., et al. AKT3 regulates ErbB2, ErbB3 and estrogen receptor α expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice // Cell Signal. - 2014. - Vol. 26, No 5. - P. 1021-9. doi: 10.1016/j.cellsig.2014.01.018.
11 Hannafon B.N., Trigoso Y.D., Calloway C.L., Zhao Y.D., Lum D.H., et al. Plasma exosome microRNAs are indicative of breast cancer // Breast Cancer Research. - 2016. - Vol. 18. - P. 90. doi: 10.1186/s13058-016-0753-x.
12 Hayes D.A., Kunde D.A., Taylor R.L., Pyecroft S.B., Sohal S.S., Snow E.T. ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1) // PLoS One. - 2017 - Vol. 12, No 6. - P. e0177919. doi: 10.1371/journal.pone.0177919.
13 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. MiR-3960 binding sites with mRNA of human genes // Bioinformation. - 2014. - Vol. 10, No 7. - P. 423-427. doi: 10.6026/97320630010423
14 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva Sh. The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes // Biomed Research International. - 2014. - Vol. 2014. - P. e8.
15 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R. Binding Sites of miR-1273 Family on the mRNA of Target Genes // Biomed Research International. - 2014. - Vol. 2014, P. e11.
16 Jo S.J., Park P.G., Cha H.R., Ahn S.G., Kim M.J., et al. Cellular inhibitor of apoptosis protein 2 promotes the epithelial-mesenchymal transition in triple-negative breast cancer cells through activation of the AKT signaling pathway // Oncotarget. - 2017. - Vol. 8, No 45. - P. 78781-78795. doi: 10.18632/oncotarget.20227.
17 Johnson J., Thijssen B., McDermott U., Garnett M., Wessels L.F., Bernards R. Targeting the RB-E2F pathway in breast cancer // Oncogene. - 2016. - Vol. 35, No 37. - P. 4829-35. doi: 10.1038/onc.2016.32.
18 Koutras A.K., Fountzilas G., Kalogeras K.T., Starakis I., Iconomou G., Kalofonos H.P. The upgraded role of HER3 and HER4 receptors in breast cancer // Crit Rev Oncol Hematol. - 2010. - Vol. 74, No 2. - P. 73-8. doi: 10.1016/j.critrevonc.2009.04.011.
19 Krishnan P., Ghosh S., Wang B., Li D., Narasimhan A., et al. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer // BMC Genomics. - 2015. - Vol. 16. - P. 735. doi: 10.1186/s12864-015-1899-0.
20 Lee S.T., Feng M., Wei Y., Li Z., Qiao Y., et al. Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis // Proc Natl Acad Sci U S A. - 2013. - Vol. 110, No 27. - P. 11121-6.
21 Li H.Y., Liang J.L., Kuo Y.L., Lee H.H., Calkins M.J., et al. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer // Breast Cancer Research. - 2017. - Vol. 19. - P. 133. doi: 10.1186/s13058-017-0918-2
22 MacFarlane L.A., Murphy P.R. MicroRNA: Biogenesis, Function and Role in Cancer // Curr Genomics. 2010. - Vol. 11, No 7. - P. 537-561. doi: 10.2174/138920210793175895
23 Mota J.M., Collier K.A., Barros Costa R.L., Taxter T., Kalyan A., et al. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer // Oncotarget. - 2017. - Vol. 8, No 51. - P. 89284-89306. doi: 10.18632/oncotarget.18467.
24 Pan H., He Z., Ling L., Ding Q., Chen L., Zha X., et al. Reproductive factors and breast cancer risk among BRCA1 or BRCA2 mutation carriers: results from ten studies // Cancer Epidemiol. - 2014. - Vol. 38, No 1. - P. 1-8. doi: 10.1016/j.canep.2013.11.004.
25 Pham D.H., Kim J.S., Kim S.K., Shin D.J., Uong N.T., et al. Effects of ADAM10 and ADAM17 Inhibitors on Natural Killer Cell Expansion and Antibody-dependent Cellular Cytotoxicity Against Breast Cancer Cells In Vitro // Anticancer Res. - 2017. - Vol. 37, No 10. - P. 5507-5513.
26 Yu Z.H., Lun S.M., He R., Tian H.P., Huang H.J., et al. Dual function of MAZ mediated by FOXF2 in basal-like breast cancer: Promotion of proliferation and suppression of progression // Cancer Lett. - 2017. - Vol. 402. - P. 142-152. doi: 10.1016/j.canlet.2017.05.020.
27 Wang J., Song C., Tang H., Zhang C., Tang J., et al. miR-629-3p may serve as a novel biomarker and potential therapeutic target for lung metastases of triple-negative breast cancer // Breast Cancer Research. - 2017. - Vol. 19. - P. 72. doi: 10.1186/s13058-017-0865-y
28 Wang W., Xu X., Tian B., Wang Y., Du L., et al. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer // Clin Chim Acta. - 2017. - Vol. 470. - P. 51-55. doi: 10.1016/j.cca.2017.04.023.
29 Wu Y., Zhang Y., Wang M., Li Q., Qu Z., et al. Downregulation of HER3 by a novel antisense oligonucleotide, EZN-3920, improves the antitumor activity of EGFR and HER2 tyrosine kinase inhibitors in animal models // Mol Cancer Ther. - 2013. - Vol. 12, No 4. - P. 427-37. doi: 10.1158/1535-7163.MCT-12-0838.
30 Zhang X., Li Q., Zhao H., Ma L., Meng T., et al. Pathological expression of tissue factor confers promising antitumor response to a novel therapeutic antibody SC1 in triple negative breast cancer and pancreatic adenocarcinoma // Oncotarget. - 2017. - Vol. 8, No 35. - P. 59086-59102. doi: 10.18632/oncotarget.19175.

Загрузки

Опубликован

2018-05-19

Выпуск

Раздел

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА

Наиболее читаемые статьи этого автора (авторов)