microRNAs and genes associated with metabolic syndrome
Keywords:
miRNA, mRNA, binding sites, target genes, metabolic syndrome.Abstract
It was created the database of genes and miRNAs, involved in the development of metabolic syndrome. 118 mRNA of genes bind with 94 miRNAs with the value of ΔG/ΔGm more than 90%. For 48 miRNAs binding sites are located in the CDS, 19 miRNA - 5'UTR, 43 miRNA - 3'UTR. Some miRNAs have polysites: miR-466 - four in mRNA of the CD36 gene, nine mRNA in mRNA of JAK2 gene, miR-619-5p - three mRNA of LDLR gene, miR-3960 - three mRNA CEBPA gene. miR-3960 binds to mRNA of four target genes, miR-466 - six, miR-1273f, miR-5095 - seven, miR-1285-5p - eight, miR-5096 - nine, miR-5585-3p - ten, miR -1273g-3p, miR-619-5p - 13 target genes. Of the 42 miRNA, the expression of 33 miRNA rises and nine miRNA decreases in metabolic syndrome. Some miRNAs have a large number of target genes: miR-185-3p, miR-378g have 11 target genes, miR-197-3p, miR-378d - ten, miR-150-3p, miR-378a-3p, miR- 378i - nine target genes, miR-145-3p - eight, miR-197-5p, miR-378b - seven target genes.
It was created the database of genes and miRNAs, involved in the development of metabolic syndrome. 118 mRNA of genes bind with 94 miRNAs with the value of ΔG/ΔGm more than 90%. For 48 miRNAs binding sites are located in the CDS, 19 miRNA - in the 5'UTR, 43 miRNA - in the 3'UTR. Some miRNAs have polysites: miR-466 - four sites with mRNA of the CD36 gene, nine sites with mRNA of JAK2 gene, miR-619-5p - three sites with mRNA of LDLR gene, miR-3960 - three sites with mRNA of CEBPA gene. Some miRNAs have multiple target genes involved in the development of metabolic syndrome. miR-3960 binds to mRNA of four target genes, miR-466 – six genes, miR-1273f, miR-5095 – seven genes, miR-1285-5p – eight genes, miR-5096 – nine genes, miR-5585-3p – ten genes, miR -1273g-3p, miR-619-5p - 13 target genes. Of the 42 miRNA, participating in the development of metabolic syndrome, the expression of 33 miRNA rises and nine miRNA decreases in metabolic syndrome. Some miRNAs have a large number of target genes: miR-185-3p, miR-378g have 11 target genes, miR-197-3p, miR-378d – ten genes, miR-150-3p, miR-378a-3p, miR- 378i – nine genes, miR-145-3p – eight genes, miR-197-5p, miR-378b - seven target genes. Some miRNA have a greater free energy of binding with mRNA of several genes. miR-378a-5p consists of 22 nt. It binds to mRNA of COL7A1 gene with the free binding energy equal to -119 kJ/mole, which is 98% of the maximum free binding energy. miR-197-5p consist of 23 nt. It binds with mRNA FAM212B, FMN2, C22orf46, PRDM1, ZFP36L1, MAP3K10, TNRC18 genes with the free binding energy equal to -119 kJ/mole, which is 90% of the maximum binding free energy. The miR-378 family have binding sites in the 3'UTR, 5'UTR and CDS of mRNAs of target genes. miR-378a-3p with a length of 21nt have 9 binding sites in mRNA of target genes, six sites of which are located in the 3'UTR, two sites are located in the CDS, one site is located in the 5'UTR. miR-378a-3p has a length of 22 nt and binds to mRNA of four target genes, three of which are located in the CDS, one is located in the 3'UTR. miR-378b with a length of 19 nt has seven target genes, miR-378d – ten genes, miR-378e – six genes, miR-378f – five genes, miR-378g – 11 genes, miR-378h – three genes, miR-378i – nine genes, miR-378j - two target genes.
References
1. Srikanthan K., Feyh A., Visweshwar H., Shapiro J.I., Sodhi K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population // International Journal of Medical Sciences. – 2016. – V.13(1). – P.25-38. Doi:10.7150/ijms.13800
2. Ramic E., Prasko S., Mujanovic O.B., Gavran L. Metabolic syndrome – theory and practice // Mater Sociomed. – 2016. – V.28(1). – P.71-73. Doi: 10.5455/msm.2016.28.71-73
3. Grundy S.M. Metabolic Syndrome Pandemic // Arterioscler Thromb Vasc Biol. – 2008. – V.28. – P.629-636. Doi:10.1161/atvbaha.107.151092
4. Grundy S.M. Metabolic syndrome update // Trends in cardiovascular medicine. – 2016. – V.26. – P.364-373. Doi:10.1016/j.tcm.2015.10.004
5. O'Neill S., Bohl M., Gregersen S., Hermansen K., O'Driscoll L. Blood-Based Biomarkers for Metabolic Syndrome // Trends Endocrinol Metab. – 2016. – V.27(6). – P.363-374. Doi:10.1016/j.tem.2016.03.012
6. Vienberg S., Geiger J., Madsen S., Dalgaard L.T. MicroRNAs in metabolism // Acta Physiol. – 2016. - [Epub ahead of print]. Doi:10.1111/apha.12681
7. De Luca P., Dalton G.N., Scalise G.D., Moiola C.P., Porretti J. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs // Oncotarget. – 2016. –V.7(14). – P. 18798-18811. Doi:10.18632/oncotarget.7711
8. Kassi E., Pervanidou P., Kaltsas G., Chrousos G. Metabolic syndrome: definitions and controversies // BMC Medicine. – 2011. – V.9. – P.48. Doi:10.1186/1741-7015-9-48
9. Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. MiR-3960 binding sites with mRNA of human genes // Bioinformation. – 2014. – V.10(7). – P.423-427. Doi:10.6026/97320630010423
10. Ivashchenko A., Pyrkova A., Niyazova R. A method for clustering of miRNA sequences using fragmented programming // Bioinformation. – 2016. – V.12(1). – P.15-18. Doi:10.6026/97320630012015
11. Hjerkinn E., Arnesen H. Arterial stiffness is independently associated with interleukin- 18 and components of the metabolic syndrome // Atherosclerosis. – 2010. – V.209. – P.337-339. Doi:10.1016/j.atherosclerosis.2009.09.028
12. Arking D.E., Krebsova A., Macek Sr. M. Association of human aging with a functional variant of klotho // Proc Natl Acad Sci USA. – 2002. – V.99. – P.856-861. Doi:10.1073/pnas.022484299
13. Majumdar V., Christopher R. Association of exonic variants of Klotho with metabolic syndrome in Asian Indians // Clinica Chimica Acta. – 2011. – V.412. – P.1116-1121. Doi:10.1016/j.cca.2011.02.034
14. Niyazova R., Atambayeva S., Akimniyazova A., Pinsky I., Alybaeva A., Faye B., Ivashchenko A.T. Features of mir-466-3p binding sites in mRNA genes with different functions // International Journal of Biology and Chemistry. – 2015. – V.8 (2). – P.44-51
15. Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes // Biomed Research International. – 2014. – V.2014. – P.1-8. DOI:10.1155/2014/720715
16. Esau C., Davis S., Murray S.F., et al. Monia: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting // Cell Metabolism. – 2006. – V.3. – P.87-98. Doi:10.1016/j.cmet.2006.01.005
17. Wang Y.T., Tsai P.C., Liao Y.C., Hsu C.Y., Juo S.H. Circulating microRNAs have a sex-specific association with metabolic syndrome // Journal of Biomedical Science. – 2013. – V.20. – P.72. Doi:10.1186/1423-0127-20-72
18. Karolina D.S., Tavintharan S., Armugam A., et al. Circulating miRNA profiles in patients with metabolic syndrome // J Clin Endocrinol Metab. – 2012. – V.97. – P.E2271-2276. Doi:10.1210/jc.2012-1996
19. Heneghan H.M., Miller N., McAnena O.J., O’Brien T., Kerin M.J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers // J Clin Endocrinol Metab. – 2011. V.96. – P.E846-850. Doi:10.1210/jc.2010-2701
20. Esau C., Kang X., Peralta E., et al. Griffey: MicroRNA-143 Regulates Adipocyte Differentiation // The Amer Soc for Biochem and Mol Biol. – 2004. – V.279. – P.52361-52365. Doi:10.1074/jbc.C400438200
21. Karolina D.S., Tavintharan S., Armugam A., et al. Circulating miRNA Profiles in Patients with Metabolic Syndrome // J Clin Endocrinol Metab. – 2012. – V.97(12). – P.E2271-E2276. Doi:10.1210/jc.2012-1996
22. Ramirez C.M., Dávalos A., Goedeke L., et al. miR-758 regulates cholesterol efflux through post-transcriptional repression of ABCA1 // Arterioscler Thromb Vasc Biol. – 2011. – V.31(11). – P.2707-2714. Doi:10.1161/ATVBAHA.111.232066
References
1. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K (2016) Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population, International Journal of Medical Sciences, 13(1):25-38. Doi:10.7150/ijms.13800
2. Ramic E, Prasko S, Mujanovic OB, Gavran L (2016) Metabolic syndrome – theory and practice, Mater Sociomed, 28(1):71-73. Doi: 10.5455/msm.2016.28.71-73
3. Grundy SM (2008) Metabolic Syndrome Pandemic, Arterioscler Thromb Vasc Biol, 28:629-636. Doi:10.1161/atvbaha.107.151092
4. Grundy SM (2016) Metabolic syndrome update, Trends in cardiovascular medicine, 26:364-373. Doi:10.1016/j.tcm.2015.10.004
5. O'Neill S, Bohl M, Gregersen S, Hermansen K, O'Driscoll L (2016) Blood-Based Biomarkers for Metabolic Syndrome, Trends Endocrinol Metab, 27(6):363-74. Doi:10.1016/j.tem.2016.03.012
6. Vienberg S, Geiger J, Madsen S, Dalgaard LT (2016) MicroRNAs in metabolism, Acta Physiol. Doi:10.1111/apha.12681
7. De Luca P, Dalton GN, Scalise GD, Moiola CP, Porretti J (2016) CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs, Oncotarget, 7(14). Doi:10.18632/oncotarget.7711
8. Kassi E, Pervanidou P, Kaltsas G, Chrousos G (2011) Metabolic syndrome: definitions and controversies, BMC Medicine, 9:48. Doi:10.1186/1741-7015-9-48
9. Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S (2014) MiR-3960 binding sites with mRNA of human genes, Bioinformation, 10(7):423-427. Doi:10.6026/97320630010423
10. Ivashchenko A, Pyrkova A, Niyazova R (2016) A method for clustering of miRNA sequences using fragmented programming, Bioinformation, 12(1):15-18. Doi:10.6026/97320630012015
11. Hjerkinn E, Arnesen H (2010) Arterial stiffness is independently associated with interleukin- 18 and components of the metabolic syndrome, Atherosclerosis, 209: 337-339. Doi:10.1016/j.atherosclerosis.2009.09.028
12. Arking DE, Krebsova A, Macek Sr M (2002) Association of human aging with a functional variant of klotho, Proc Natl Acad Sci USA, 99:856-61. Doi:10.1073/pnas.022484299
13. Majumdar V, Christopher R (2011) Association of exonic variants of Klotho with metabolic syndrome in Asian Indians, Clinica Chimica Acta, 412:1116-1121. Doi:10.1016/j.cca.2011.02.034
14. Niyazova R, Atambayeva S, Akimniyazova A, Pinsky I, Alybaeva A, Faye B, Ivashchenko AT (2015) Features of mir-466-3p binding sites in mRNA genes with different functions, International Journal of Biology and Chemistry, 8 (2):44-51
15. Ivashchenko A, Berillo O, Pyrkova A, Niyazova R, Atambayeva S (2014) The properties of binding sites of miR-619-5p, miR-5095, miR-5096 and miR-5585-3p in the mRNAs of human genes, Biomed Research International, 2014:1-8. DOI:10.1155/2014/720715
16. Esau C, Davis S, Murray SF, et al (2006) Monia: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metabolism, 3:87-98. Doi:10.1016/j.cmet.2006.01.005
17. Wang YT, Tsai PC, Liao YC, Hsu CY, Juo SH (2013) Circulating microRNAs have a sex-specific association with metabolic syndrome, Journal of Biomedical Science, 20:72. Doi:10.1186/1423-0127-20-72
18. Karolina DS, Tavintharan S, Armugam A, et al (2012) Circulating miRNA profiles in patients with metabolic syndrome, J Clin Endocrinol Metab, 97:E2271-2276. Doi:10.1210/jc.2012-1996
19. Heneghan HM, Miller N, McAnena OJ, O’Brien T, Kerin MJ (2011) Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers, J Clin Endocrinol Metab, 96:E846-850. Doi:10.1210/jc.2010-2701
20. Esau C, Kang X, Peralta E, et al (2004) Griffey: MicroRNA-143 Regulates Adipocyte Differentiation, The Amer Soc for Biochem and Mol Biol, 279:52361-52365. Doi:10.1074/jbc.C400438200
21. Karolina DS, Tavintharan S, Armugam A, et al (2012) Circulating miRNA Profiles in Patients with Metabolic Syndrome, J Clin Endocrinol Metab, 97(12):E2271-E2276. Doi:10.1210/jc.2012-1996
22. Ramirez CM, Dávalos A, Goedeke L, et al (2011) miR-758 regulates cholesterol efflux through post-transcriptional repression of ABCA1, Arterioscler Thromb Vasc Biol, 31(11): 2707-2714. Doi:10.1161/ATVBAHA.111.232066