САЙТЫ СВЯЗЫВАНИЯ ИНТРОННЫХ microRNA С 5'UTR, CDS И 3'UTR mRNA ГЕНОВ, УЧАСТВУЮЩИХ В РАЗВИТИИ РАКА ТОЛСТОЙ КИШКИ ЧЕЛОВЕКА
Ключевые слова:
гибридизация, miRNA, mRNA, ісік ауруы, гетерогенділікАннотация
Установлены сайты гибридизации 686 интронных miRNA с mRNA 54 генов, которые принимают участие в развитии рака толстой кишки человека. Выявлено разное соотношение сайтов связывания изученных miRNA с 5'UTR, CDS и 3'UTR mRNA каждого гена. Установлена значительная гетерогенность функциональных участков mRNA по числу сайтов связывания и по плотности расположения этих сайтов с miRNA. Найдены miRNA, обладающие высокой селективностью к mRNA некоторых генов. Бұл жұмыста 686 интронды miRNA-дың адамның тоқ ішек ісік ауруының дамуына қатысатын 54 геннің mRNA-мен гибридизация сайттары анықталды. Зерттелген miRNA-дың əрбір ген mRNA-ның 5'UTR, CDS жəне 3'UTR-мен байланыс сайттарының əртүрлі арақатынасы айқындалған. RNA функциональды бөліктерінің miRNA- мен байланыстыру сайттарының орналасу тығыздығына байланысты жəне бұл сайттардың саны бойынша гетерогенділік анықталды. Кейбір miRNA гендердің mRNA-на сұрыптаушылықпен ерекшеленеді.Библиографические ссылки
1. Iorio M. V., Croce C. M. MicroRNAs in cancer: small molecules with a huge impact // J. Clin Oncol, 2009, Vol. 27, P. 5848-5856.
2. Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell, 2004, Vol. 116 (2), P. 281–97.
3. Rodriguez A., Griffiths-Jones S., Ashurst J., Bradley A. Identification of mammalian microRNA host genes and transcription units // Genome Res., 2004, Vol. 14, P. 1902-1910.
4. Aboobaker A., Tomancak P., Patel N., Rubin G., Lai E. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development // Proc. Natl. Acad. Sci. USA, 2005, Vol. 102, P. 18017-18022.
5. Isik M., Korswagen H., Berezikov E. Expression patterns of intronic microRNAs in Caenorhabditis elegans // Silence, 2010, Vol. 1, P.1758-907X
6. Calin G. A., Sevignani C., Dumitru C. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. PNAS, 2004, vol.101(9), Р. 2999 –3004
7. Lee I., Ajay S., Yook J. et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites // Genome Research, 2009, Vol. 19 (7), P. 1175-1183.
8. Elcheva S., Goswami F., Noubissi K., Spiegelman V. CRD-BP protects the coding region of βTrCP1 mRNA from miR-183-mediated degradation // Molecular Cell, 2009, Vol.35 (2), P. 240-246.
9. Tay Y., Zhang J., Thompson A., Lim B. et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differention // Nature, 2008, Vol. 455, P.1124-1128
10. Tsai N.-P. et al., MicroRNA mir-346 targets the 5'UTR of RIP140 mRNA and up-regulates its protein expression // Biochem J., 2009, Vol. 424 (3) P. 411-8.
11. Lytle R., Yario T., Steitz J. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR // PNAS, 2007, Vol. 104 (23), P. 9667-9672.
12. Duursma A., Kedde M., Schrier M., le Sage C., Agami R. miR-148 targets human DNMT3b protein coding region // RNA, 2008, Vol. 14, P. 872-877.
13. Moretti F., Thermann R., Hentze M. Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame // RNA, 2010, Vol. 16, P. 2493-502.
14. Qin W., Shi Y., Zhao B. et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells // PLoS One, 2010, Vol. 5, P. e9429.
15. Ørom U., Nielsen F., Lund A. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation // Mol. Cell., 2008, Vol. 30 (4), P. 460-471.
16. Guo H., Ingolia N., Weissman J., Bartel D. Mammalian microRNAs predominantly act to decrease target mRNA levels // Nature, 2010, Vol. 466, P. 835-840.
17. Easow G., Teleman A., Cohen S. Isolation of microRNA targets by miRNP immunopurification // RNA, 2007, Vol. 13, P. 1198-204.
18. Gu S., Jin L., Zhang F., Sarnow P., Kay M. Biological basis for restriction of microRNA targets to the 3 untranslated region in mammalian mRNAs // Nat. Struct. Mol. Biol., 2009, Vol. 16, P. 144-150.
19. Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites // Cancer Res., 2009, Vol. 69, P. 3245-3248.
20. Kloosterman W., Wienholds E., Ketting R., Plasterk R. Substrate requirements for let-7 function in the developing zebrafish embryo // Nucleic Acids Res., 2004, Vol. 32, P. 6284-6291.
21. Medina P.P., Nolde M., Slack F.J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma // Nature, 2010, Vol. 467, P. 86-91.
22. Tan Y., Zhang B., Wu T., Skogerbø G., Zhu X., Guo X. et al. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells // BMC Molecular Biology, 2009, Vol. 10, P. 12.
23. Calin G., Dumitru C., Shimizu M. et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia // Proc. Natl.Acad. Sci. USA, 2002, Vol. 99, P.15524-15529.
24. Hamano R., Ishii H., Miyata H., Doki Y., Mori M. Role of microRNAs in solid tumors // Journal of Nucleic Acids Investigation, 2011, Vol. 2 (e2), Р. 5-16.
25. Lu J., Getz G., Miska E. et al. MicroRNA expression profiles classify human cancers // Nature, 2005, Vol. 435, P. 834-838.
26. Si M., Zhu S., Wu H. et al. miR-21-mediated tumor growth // Oncogene, 2007, Vol. 26, P. 2799-2803.
27. Markou A., Tsaroucha E., Kaklamanis L. et al. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR // Clin. Chem., 2008, Vol. 54, P. 1696-1704.
28. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival // Cancer Res., 2004, Vol. 64, P. 3753-3756.
29. Hiyoshi .Y, Kamohara H., Karashima R. et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma // Clin. Cancer. Res. 2009, Vol. 15, P. 1915-1922.
30. Lee E., Gusev Y., Jiang J. et al. Expression profiling identifies microRNA signature in pancreatic cancer // Int. J. Cancer, 2007, Vol. 120, P. 1046-1054.
31. Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinico-pathologic features of colorectal cancer // Oncology, 2007, Vol. 72, P. 397-402.
32. Schepeler T., Reinert J., Ostenfeld M. et al. Diagnostic and prognostic microRNAs in stage II colon cancer // Cancer Res., 2008, Vol. 68, P. 6416-6424.
33. Tsang W., Kwok T. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on KRas // Carcinogenesis, 2009, Vol. 30, P. 953-959.
34. Wang P., Zou F., Zhang X. et al. MicroRNA-21 negatively regulates Cdc25A and cellcycle progression in colon cancer cells // Cancer Res., 2009, Vol. 69, P. 8157-8165.
35. Tazawa H., Tsuchiya N., Izumiya M., Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells // Proc. Natl. Acad. Sci. USA, 2007, Vol. 104, P.15472-15477.
36. Díaz R., Silva J., García J. et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients // Genes Chromosomes Cancer, 2008, Vol. 47, P. 794-802.
37. Ng E., Tsang W., Ng S. et al. MicroRNA-143 targets DNA methyltransferases 3A incolorectal cancer // Br. J.Cancer, 2009, Vol. 101, P. 699-706.
38. Shi B., Sepp-Lorenzino L., Prisco M. et al. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells // Biol. Chem., 2007, Vol. 282, P.32582-32590.
39. Valeri N., Gasparini P., Fabbri M. et al. Modulation of mismatch repair and genomic stability by miR-155 // Proc.Natl. Acad. Sci. USA, 2010, Vol. 107, P. 6982-6987.
40. Schimanski C., Frerichs K., Rahman F. et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells // World J. Gastroenterol, 2009, Vol. 15, P. 2089-2096.
41. Tsang W., Ng E., Ng S. et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer // Carcinogenesis, 2010, Vol. 31, P. 350-358.
42. Link A., Balaguer F., Shen Y. et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. // Cancer Epidemol Biomarcers Mol., 2010, Vol. 19, P. 1766-7445.
43. Song B., Wang Y., Xi Y. et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells // Oncogene, 2009, Vol. 28, P. 4065-4074.
44. Song B., Wang Y., Titmus M. et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells // Mol. Cancer, 2010, Vol. 9, P. 96.
45. Meng F., Henson R., Wehbe-Janek H. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer // Gastroenterology, 2007, Vol. 133, P. 647-658.
46. Yamakuchi M., Lotterman C., Bao C. et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis // Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, P. 6334-6339.
47. Braun C., Zhang X., Savelyeva I. et al. P53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest // Cancer Res., 2008, Vol. 68, P. 10094-10104.
48. Song B., Wang Y., Kudo K. et al. MiR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit // Clin. Cancer Res., 2008, Vol. 14, P.8080-8086.
49. Bartel D. miRNAs: Target Recognition and Regulatory Functions // Cell, 2009, Vol.136, P. 215-233.
50. Kruger J., Rehmsmeier M. RNAhybrid: miRNA target prediction easy, fast and flexible // Nucleic Acids Res., 2006, Vol. 34, P. W451-454.
51. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R. Fast and effective prediction of miRNA/target duplexes // RNA, Vol. 10, P. 1507-1517.
52. Maragkakis M., Reczko M., Simossis V., Alexiou P., Papadopoulos G. et al, DIANA-microT web server: elucidating miRNA functions through target prediction // Nucleic Acids Res., 2009, Vol. 37, P. W273-276.
53. Maragkakis M., Vergoulis T., Alexiou P., Reczko M., Plomaritou K., Gousis M. et al DIANA-microT web server upgrade supports fly and worm miRNA target prediction and bibliographic miRNA to disease association // Nucleic Acids Res., 2011, Vol. 39, P. W145-148.
54. Maziere P., Enright A. Prediction of miRNA targets drug // Discovery Today, 2007, Vol. 12 (11/12), P. 452-458.
2. Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell, 2004, Vol. 116 (2), P. 281–97.
3. Rodriguez A., Griffiths-Jones S., Ashurst J., Bradley A. Identification of mammalian microRNA host genes and transcription units // Genome Res., 2004, Vol. 14, P. 1902-1910.
4. Aboobaker A., Tomancak P., Patel N., Rubin G., Lai E. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development // Proc. Natl. Acad. Sci. USA, 2005, Vol. 102, P. 18017-18022.
5. Isik M., Korswagen H., Berezikov E. Expression patterns of intronic microRNAs in Caenorhabditis elegans // Silence, 2010, Vol. 1, P.1758-907X
6. Calin G. A., Sevignani C., Dumitru C. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. PNAS, 2004, vol.101(9), Р. 2999 –3004
7. Lee I., Ajay S., Yook J. et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites // Genome Research, 2009, Vol. 19 (7), P. 1175-1183.
8. Elcheva S., Goswami F., Noubissi K., Spiegelman V. CRD-BP protects the coding region of βTrCP1 mRNA from miR-183-mediated degradation // Molecular Cell, 2009, Vol.35 (2), P. 240-246.
9. Tay Y., Zhang J., Thompson A., Lim B. et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differention // Nature, 2008, Vol. 455, P.1124-1128
10. Tsai N.-P. et al., MicroRNA mir-346 targets the 5'UTR of RIP140 mRNA and up-regulates its protein expression // Biochem J., 2009, Vol. 424 (3) P. 411-8.
11. Lytle R., Yario T., Steitz J. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR // PNAS, 2007, Vol. 104 (23), P. 9667-9672.
12. Duursma A., Kedde M., Schrier M., le Sage C., Agami R. miR-148 targets human DNMT3b protein coding region // RNA, 2008, Vol. 14, P. 872-877.
13. Moretti F., Thermann R., Hentze M. Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame // RNA, 2010, Vol. 16, P. 2493-502.
14. Qin W., Shi Y., Zhao B. et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells // PLoS One, 2010, Vol. 5, P. e9429.
15. Ørom U., Nielsen F., Lund A. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation // Mol. Cell., 2008, Vol. 30 (4), P. 460-471.
16. Guo H., Ingolia N., Weissman J., Bartel D. Mammalian microRNAs predominantly act to decrease target mRNA levels // Nature, 2010, Vol. 466, P. 835-840.
17. Easow G., Teleman A., Cohen S. Isolation of microRNA targets by miRNP immunopurification // RNA, 2007, Vol. 13, P. 1198-204.
18. Gu S., Jin L., Zhang F., Sarnow P., Kay M. Biological basis for restriction of microRNA targets to the 3 untranslated region in mammalian mRNAs // Nat. Struct. Mol. Biol., 2009, Vol. 16, P. 144-150.
19. Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites // Cancer Res., 2009, Vol. 69, P. 3245-3248.
20. Kloosterman W., Wienholds E., Ketting R., Plasterk R. Substrate requirements for let-7 function in the developing zebrafish embryo // Nucleic Acids Res., 2004, Vol. 32, P. 6284-6291.
21. Medina P.P., Nolde M., Slack F.J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma // Nature, 2010, Vol. 467, P. 86-91.
22. Tan Y., Zhang B., Wu T., Skogerbø G., Zhu X., Guo X. et al. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells // BMC Molecular Biology, 2009, Vol. 10, P. 12.
23. Calin G., Dumitru C., Shimizu M. et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia // Proc. Natl.Acad. Sci. USA, 2002, Vol. 99, P.15524-15529.
24. Hamano R., Ishii H., Miyata H., Doki Y., Mori M. Role of microRNAs in solid tumors // Journal of Nucleic Acids Investigation, 2011, Vol. 2 (e2), Р. 5-16.
25. Lu J., Getz G., Miska E. et al. MicroRNA expression profiles classify human cancers // Nature, 2005, Vol. 435, P. 834-838.
26. Si M., Zhu S., Wu H. et al. miR-21-mediated tumor growth // Oncogene, 2007, Vol. 26, P. 2799-2803.
27. Markou A., Tsaroucha E., Kaklamanis L. et al. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR // Clin. Chem., 2008, Vol. 54, P. 1696-1704.
28. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival // Cancer Res., 2004, Vol. 64, P. 3753-3756.
29. Hiyoshi .Y, Kamohara H., Karashima R. et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma // Clin. Cancer. Res. 2009, Vol. 15, P. 1915-1922.
30. Lee E., Gusev Y., Jiang J. et al. Expression profiling identifies microRNA signature in pancreatic cancer // Int. J. Cancer, 2007, Vol. 120, P. 1046-1054.
31. Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinico-pathologic features of colorectal cancer // Oncology, 2007, Vol. 72, P. 397-402.
32. Schepeler T., Reinert J., Ostenfeld M. et al. Diagnostic and prognostic microRNAs in stage II colon cancer // Cancer Res., 2008, Vol. 68, P. 6416-6424.
33. Tsang W., Kwok T. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on KRas // Carcinogenesis, 2009, Vol. 30, P. 953-959.
34. Wang P., Zou F., Zhang X. et al. MicroRNA-21 negatively regulates Cdc25A and cellcycle progression in colon cancer cells // Cancer Res., 2009, Vol. 69, P. 8157-8165.
35. Tazawa H., Tsuchiya N., Izumiya M., Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells // Proc. Natl. Acad. Sci. USA, 2007, Vol. 104, P.15472-15477.
36. Díaz R., Silva J., García J. et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients // Genes Chromosomes Cancer, 2008, Vol. 47, P. 794-802.
37. Ng E., Tsang W., Ng S. et al. MicroRNA-143 targets DNA methyltransferases 3A incolorectal cancer // Br. J.Cancer, 2009, Vol. 101, P. 699-706.
38. Shi B., Sepp-Lorenzino L., Prisco M. et al. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells // Biol. Chem., 2007, Vol. 282, P.32582-32590.
39. Valeri N., Gasparini P., Fabbri M. et al. Modulation of mismatch repair and genomic stability by miR-155 // Proc.Natl. Acad. Sci. USA, 2010, Vol. 107, P. 6982-6987.
40. Schimanski C., Frerichs K., Rahman F. et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells // World J. Gastroenterol, 2009, Vol. 15, P. 2089-2096.
41. Tsang W., Ng E., Ng S. et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer // Carcinogenesis, 2010, Vol. 31, P. 350-358.
42. Link A., Balaguer F., Shen Y. et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. // Cancer Epidemol Biomarcers Mol., 2010, Vol. 19, P. 1766-7445.
43. Song B., Wang Y., Xi Y. et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells // Oncogene, 2009, Vol. 28, P. 4065-4074.
44. Song B., Wang Y., Titmus M. et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells // Mol. Cancer, 2010, Vol. 9, P. 96.
45. Meng F., Henson R., Wehbe-Janek H. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer // Gastroenterology, 2007, Vol. 133, P. 647-658.
46. Yamakuchi M., Lotterman C., Bao C. et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis // Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, P. 6334-6339.
47. Braun C., Zhang X., Savelyeva I. et al. P53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest // Cancer Res., 2008, Vol. 68, P. 10094-10104.
48. Song B., Wang Y., Kudo K. et al. MiR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit // Clin. Cancer Res., 2008, Vol. 14, P.8080-8086.
49. Bartel D. miRNAs: Target Recognition and Regulatory Functions // Cell, 2009, Vol.136, P. 215-233.
50. Kruger J., Rehmsmeier M. RNAhybrid: miRNA target prediction easy, fast and flexible // Nucleic Acids Res., 2006, Vol. 34, P. W451-454.
51. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R. Fast and effective prediction of miRNA/target duplexes // RNA, Vol. 10, P. 1507-1517.
52. Maragkakis M., Reczko M., Simossis V., Alexiou P., Papadopoulos G. et al, DIANA-microT web server: elucidating miRNA functions through target prediction // Nucleic Acids Res., 2009, Vol. 37, P. W273-276.
53. Maragkakis M., Vergoulis T., Alexiou P., Reczko M., Plomaritou K., Gousis M. et al DIANA-microT web server upgrade supports fly and worm miRNA target prediction and bibliographic miRNA to disease association // Nucleic Acids Res., 2011, Vol. 39, P. W145-148.
54. Maziere P., Enright A. Prediction of miRNA targets drug // Discovery Today, 2007, Vol. 12 (11/12), P. 452-458.
Загрузки
Как цитировать
Берилло, О. А., Хайленко, В. А., & Иващенко, А. Т. (2015). САЙТЫ СВЯЗЫВАНИЯ ИНТРОННЫХ microRNA С 5’UTR, CDS И 3’UTR mRNA ГЕНОВ, УЧАСТВУЮЩИХ В РАЗВИТИИ РАКА ТОЛСТОЙ КИШКИ ЧЕЛОВЕКА. Вестник КазНУ. Серия биологическая, 53(1), 9–13. извлечено от https://bb.kaznu.kz/index.php/biology/article/view/234
Выпуск
Раздел
БИОТЕХНОЛОГИЯ, БИОХИМИЯ И ФИЗИОЛОГИЯ РАСТЕНИЙ