Гены, регулирующие клеточный цикл и апоптоз, являются мишенями для miR-619, miR-5096, miR-5095 и miR-5585, R.Y. Niyazova, S.A. Atambayeva, A.T. Ivashchenko Genes regulate the cell cycle and apoptosis are targets for miR-619, miR-5096, miR-5095 and miR-558

Авторы

  • А. Т. Иващенко Национальная нанотехнологическая лаборатория КазНУ им.аль-Фараби
  • Ш. А. Атамбаева Национальная нанотехнологическая лаборатория КазНУ им.аль-Фараби
  • Р. Е. Ниязова Национальная нанотехнологическая лаборатория КазНУ им.аль-Фараби

Ключевые слова:

miRNA, ген, апоптоз, клеточный цикл, рак, gene, apoptosis, cell cycle, cancer,

Аннотация

Из нескольких десятков генов, участвующих в регуляции клеточного цикла и апоптоза, выявлены гены мишени для miR-619-5p, miR-5096, miR-5095 и miR-5585-3p. Гены ATM и VHL участвуют в регуляции апоптоза и клеточного цикла и являются мишенями для всех этих miRNA. Гены BRCA1, IRF1, RBBP4 участвуют в регуляции клеточного цикла и являются мишенями для miR-619-5p, miR-5096, miR-5095 и miR-5585-3p, а гены CLSPN, TBRG1 и RBL1 являются мишенями для трех из этих miRNA. Гены DFFA, DNASE1 участвуют в регуляции апоптоза и являются мишенями для каждой из miR-619-5p, miR-5096, miR-5095 и miR-5585-3p, а гены CFLAR, CTSB, FOXO3, IKBIP, IL10, NAIP, SCAF11 и SPN являются мишенями для трех из четырех изученных miRNA. Экспрессия генов CASP6, CASP8, CASP10 и CASP14 тоже находится под контролем miR-619-5p, miR-5096, miR-5095 и miR-5585-3p. Изученные miRNA при соответствующих концентрациях могут сильно влиять на экспрессию генов, участвующих в регуляции клеточного цикла и апоптоза. Of the tens genes involved in cell cycle and apoptosis regulation, we identified target genes for miR-619-5p, miR-5096, miR-5095 and miR-5585-3p. ATM and VHL genes that involved in regulation of apoptosis and cell cycle are targets of these miRNAs. Genes BRCA1, IRF1, RBBP4 involved in cell cycle regulation and they are targets for miR-619-5p, miR-5096, miR-5095 and miR-5585-3p; and genes CLSPN, TBRG1 RBL1 are targets for three of these miRNA. Genes DFFA, DNASE1 involved in the regulation of apoptosis are targets for miR-619-5p, miR-5096, miR-5095 and miR-5585-3p; and genes CFLAR, CTSB, FOXO3, IKBIP, IL10, NAIP, SCAF11, SPN are targets for three of the four studied miRNAs. Expression of CASP6, CASP8, CASP10 CASP14 genes is also under the control of miR-619-5p, miR-5096, miR-5095 and miR-5585-3p. Studied miRNAs under the appropriate concentrations can greatly affect the expression of genes involved in cell cycle and apoptosis regulation.

Библиографические ссылки

1 Wong R.S. Apoptosis in cancer: from pathogenesis to treatment // Journal of Experimental & Clinical Cancer Research. – 2011. – Vol. 30. – P. 87.

2 Cheng Q., Yi B., Wang A., Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis // Onco Targets Ther. – 2013. – Vol. 6. – P. 1675-1684.

3 Hamzeiy H., Allmer J., Yousef M. Computational methods for microRNA target prediction // Methods Mol Biol. – 2014 – Vol.1107. – P. 207-221.

4 Khalil H.S., Tummala H., Chakarov S., et al. Targeting ATM pathway for therapeutic intervention in cancer // Biodiscovery. –2012. – Vol. 1. – P. 3.

5 Zhou Q., Pardo A., Königshoff M., et al. Role of von Hippel-Lindau protein in fibroblast proliferation and fibrosis // FASEB J. – 2011. – Vol. 25. – P. 3032-3044.

6 Hsia TC, Tsai CW, Liang SJ, et al. Effects of ataxia telangiectasia mutated (ATM) genotypes and smoking habits on lung cancer risk in Taiwan // Anticancer Res. – 2013. – Vol. 33. – P. 4067-4071.

7 Hai Jiang H., Reinhardt C., Bartkova J., et al. The combined status of ATM and p53 link tumor development with therapeutic response // Genes & Dev. – 2009. – Vol. 23. – P. 1895-1909

8 Zhou Q., Chen T., Ibe JC., et al. Knockdown of von Hippel-Lindau protein decreases lung cancer cell proliferation and colonization // FEBS Lett. – 2012 – Vol. 586. – P. 1510-1515.

9 Zia M.K., Rmali K.A., Watkins G., et al. The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells // Int J Mol Med. – 2007. – Vol. 20. – P. 605-611.

10 Menkiszak J., Chudecka-Głaz A., Gronwald J., et al. Characteristics of selected clinical features in BRCA1 mutation carriers affected with breast cancer undergoing preventive female genital tract surgeries // Ginekol Pol. – 2013. – Vol. 84. – P. 758-764.

11 Zhang X., Wei J., Zhou L., et al. A functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma // Carcinogenesis. – 2013. – Vol. 34. – P. 2309-2313.

12 Cavalli L.R., Riggins R.B., Wang A., et al. Frequent loss of heterozygosity at the interferon regulatory factor-1 gene locus in breast cancer // Breast Cancer Res Treat. – 2010. – Vol.121. – P. 227-231.

13 Bouker K.B., Skaar T.C., Riggins R.B., et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis // Carcinogenesis. – 2005. – Vol. 26. – P. 1527-1535.

14 Gao J., Senthil M., Ren B., et al. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells // Cell Death Differ. – 2010. – Vol. 17. – P. 699-709.

15 Romeo G., Fiorucci G., Chiantore M.V., et al. IRF-1 as a negative regulator of cell proliferation // J Interferon Cytokine Res. – 2002. – Vol.22. – P. 39-47.

16 Hosgood H.D., Menashe I., Shen M., et al. Pathway-based evaluation of 380 candidate genes and lung cancer susceptibility suggests the importance of the cell cycle pathway // Carcinogenesis. – 2008. – Vol. 29. – P. 1938-1943.

17Yarden R.I., Brody L.C. BRCA1 interacts with components of the histone deacetylase complex // Proc Natl Acad Sci U S A. –1999. – Vol. 96. – P. 4983-4988.

18 Fujita N., Jaye D.L., Kajita M., et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer // Cell. – 2003. – Vol. 113. – P. 207-219.

19 García-Alai M.M., Allen M.D., Joerger A.C., Bycroft M. The structure of the FYR domain of transforming growth factor beta regulator 1 // Protein Sci. – 2010. – Vol. 19. – P. 1432-1428.

20 Ruiz S., Santos M., Segrelles C., et al. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis // Development. – 2004. – Vol. 131. – P. 2737-2748.

21 Harrington E.A., Bruce J.L., Harlow E., Dyson N. pRB plays an essential role in cell cycle arrest induced by DNA damage // Proc Natl Acad Sci U S A. – 1998. – Vol. 95. – P. 11945-11950.

22 Jiang Z., Deng T., Jones R., et al. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status // J Clin Invest. – 2010. – Vol. 120. – P. 3296-3309.

23 Erkko H., Pylkäs K., Karppinen S.M., Winqvist R. Germline alterations in the CLSPN gene in breast cancer families // Cancer Lett. – 2008. – Vol. 261. – P. 93-97.

24 Widlak P., Lanuszewska J., Cary R.B., Garrard W.T. Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis // J Biol Chem. – 2003. – Vol. 278. – P. 26915-26922.

25 Abel F., Sjöberg R.M., Ejeskär K., et al. Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours // Br J Cancer. – 2002. – Vol. 86. – P. 596-604.

26Oliveri M., Daga A., Cantoni C., et al. DNase I mediates internucleosomal DNA degradation in human cells undergoing druginduced
apoptosis // Eur J Immunol. – 2001. – Vol. 31. – P. 743-751.51
ISSN 1563-0218 a KzNU Bulletin. Biology series. №1/1 (60). 2014
Р.Е. Ниязова и др.

27 Rosner K., Kasprzak M.F., Horenstein A.C., et al. Engineering a waste management enzyme to overcome cancer resistance to apoptosis: adding DNase1 to the anti-cancer toolbox // Cancer Gene Ther. – 2011. – Vol. 18. – P. 346-357.

28 Wilkie-Grantham R.P., Matsuzawa S., Reed J.C. Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein // J Biol Chem. – 2013. – Vol. 288. – P. 12777-12790.

29 Rogers K.M., Thomas M., Galligan L., et al. Cellular FLICE-inhibitory protein regulates chemotherapy-induced apoptosis in breast cancer cells // Mol Cancer Ther. – 2007. – Vol. 6. – P. 1544-1551.

30 Mullins S.R., Sameni M., Blum G., et al. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins // Biol Chem. – 2012. – Vol. 393. – P. 1405-1416.

31 Withana N.P., Blum G., Sameni M., et al. Cathepsin B inhibition limits bone metastasis in breast cancer // Cancer Res. – 2012.– Vol. 72. – P. 1199-1209.

32 Nouh M.A., Mohamed M.M., El-Shinawi M., et al. Cathepsin B: a
potential prognostic marker for inflammatory breast cancer // J Transl Med. – 2011. – Vol. 9. – P. 1-9.

33 Karadedou C.T., Gomes A.R., Chen J., et al. FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer // Oncogene. – 2012. – Vol. 31. – P. 1845-1858.

34 Mikse O.R., Blake D.C., Jones N.R., et al. FOXO3 encodes a carcinogen-activated transcription factor frequently deleted in early-stage lung adenocarcinoma // Cancer Res. – 2010. – Vol. 70. – P. 6205-6215.

35 Hofer-Warbinek R., Schmid J.A., Mayer H., et al. A highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53 // Cell Death Differ. – 2004. – Vol. 11. – P. 1317-1325.

36 Wang Y.C., Sung W.W., Wang L., et al. Different impact of IL10 haplotype on prognosis in lung squamous cell carcinoma and adenocarcinoma // Anticancer Res. – 2013. – Vol. 33. – P. 2729-2735.

37 Liang X., Zhang J., Zhu Y., et al. Specific genetic polymorphisms of IL10-592 AA and IL10-819 TT genotypes lead to the key role for inducing docetaxel-induced liver injury in breast cancer patients // Clin Transl Oncol. – 2013. – Vol. 15. – P. 331-334.

38 Choi J., Hwang Y.K., Choi Y.J., et al. Neuronal apoptosis inhibitory protein is overexpressed in patients with unfavorable prognostic factors in breast cancer // J Korean Med Sci. – 2007. – Vol.22. – S17-23.

39 Fu Q., Cash S.E., Andersen J.J., et al. CD43 in the nucleus and cytoplasm of lung cancer is a potential therapeutic target // Int J Cancer. – 2013. – Vol. 132. – P. 1761-1770.

Загрузки

Дополнительные файлы

Выпуск

Раздел

Биоинформатика, геномика и протеомика. Физико-химическая биология

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>