ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ БАКТЕРИЯМИ РОДОВ AEROMONAS И PSEUDOMONAS ПРИ ВЫРАЩИВАНИИ РЫБ В УСЛОВИЯХ РЕГУЛИРУЕМЫХ СИСТЕМ

Авторы

  • С. С. Бакиев Казахский национальный университет имени аль-Фараби, Казахстан, Алматы
  • А. К. Бисенбаев Казахский национальный университет имени аль-Фараби, Казахстан, Алматы

DOI:

https://doi.org/10.26577/eb.2021.v87.i2.01

Аннотация

Аквакультура представляет более высокую долю мирового производства рыбы и оказывает сильное влияние на ценообразование в секторе в целом (как производстве, так и торговле). Установлено, что общая стоимость продажи продукции рыболовства и аквакультуры в 2016 году оценивалась в 362 млрд долларов США, из которых 232 млрд долларов США приходилось на продукцию аквакультуры. В период с 1961 по 2016 год среднегодовое увеличение мирового потребления пищевой рыбы (3,2 процента) опережало рост популяции (на 1,6 процента) и превышало потребление мяса всех наземных животных, вместе взятых (на 2,8 процента). За счет создания оптимальных условий выращивания таких как температурный, кислородный и гидрохимический режимы, значительно сокращаются сроки роста и полового созревания рыб что способствует развитию индустриальной аквакультуры. Однако быстрое развитие аквакультуры сопровождается вспышками заболеваний, вызванных бактериальной инфекцией, которые приводят к высокой смертности и катастрофическим экономическим потерям. Массовые вспышки могут происходить внезапно под действием стрессовых факторов, возникающих в связи с резким изменением условий содержания, а также увеличением плотностей посадок объектов выращивания. Наиболее тяжелыми бактериальными заболеваниями в аквакультуре являются инфекции, вызываемые представителями родов Aeromonas и Pseudomonas. Бактерии родов Aeromonas и Pseudomonas являются возбудителями геморрагической септицемии (Aeromonas hydrophila, Pseudomonas fluorescens), фурункулеза (Aeromonas salmonicida) ежегодно являющиеся причинами экономических потерь в аквакультуре. В настоящее время из-за широкого и часто неконтролируемого использования антибиотиков количество бактерий, устойчивых к антибиотикам, резко возросло и является основной причиной заболеваемости и смертности. Это явление может не только привести к неудаче антимикробной терапии, но и вызвать опасения относительно безопасности рыбных продуктов.

В настоящем обзоре рассматриваются современные данные о заболеваниях рыб, вызываемые бактериями родов Aeromonas и Pseudomonas, доминирующих факторах вирулентности, проблемы идентификации и устойчивости к антибиотикам.  

Библиографические ссылки

1. FAO. The State of World Fisheries and Aquaculture (2018) Meeting the sustainable development goals. Rome, Italy. 210 p.
2. Badiola M., Mendiola D., Bostock J. (2012) Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, vol. 51, pp. 26–35. doi:10.1016/j.aquaeng.2012.07.004.
3. Bronzi P., Rosenthal H., Gessner J. (2011) Global sturgeon aquaculture production: an overview. Journal of Applied Ichthyology, vol. 27, no. 2, pp. 169–175. doi:10.1111/j.1439-0426.2011.01757.x.
4. Frank Asche, Kristin H. Roll, Hilde N. Sandvold, Arne Sørvig, Dengjun Zhang (2013) Salmon aquaculture: larger companies and increased production. Aquaculture Economics & Management, vol. 17, no. 3, pp. 322-339. DOI: 10.1080/13657305.2013.812156.
5. Mohammad Mustafizur Rahman (2015) Role of common carp (Cyprinus carpio) in aquaculture production systems. Frontiers in Life Science, vol. 8, no. 4, pp. 399-410, DOI: 10.1080/21553769.2015.1045629.
6. Dauda A.B., Natrah I., Karim M., Kamarudin M.S., Bichi, A.H. (2018) African Catfish Aquaculture in Malaysia and Nigeria: Status, Trends and Prospects. Fisheries and Aquaculture Journal, vol. 9, pp. 1-5.
7. Roszak D., Colwell, R. (1987) Survival strategies of bacteria in the natural environment // Microbiological reviews, vol. 51, no. 3, pp. 365-79.
8. Aruety T., Brunner T., Ronen Z., Gross A., Sowers K., Zilberg D. (2016) Decreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS). Aquaculture, vol. 450, pp. 335–341. doi:10.1016/j.aquaculture.2015.08.002.
9. Fernández-Bravo A, Figueras M.J. (2020) An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms, vol. 8, no. 1, pp. 129. doi: 10.3390/microorganisms8010129. PMID: 31963469; PMCID: PMC7022790.
10. Holt J.G., Krieg N.R., Sneath P.H.A., Stanley J.T., William S.T. (1994) Bergey’s Manual of Determinative Bacteriology. Williams and Wilikins. Baltimore, 787 p.
11. Altwegg M., Steigerwalt A.G., Altwegg-Bissig R., Lüthy-Hottenstein J., Brenner D.J. (1990) Biochemical identification of Aeromonas genospecies isolated from humans. J Clin Microbiol, vol. 28, no. 2, pp. 258-64. doi: 10.1128/JCM.28.2.258-264.1990. PMID: 2312673; PMCID: PMC269587.
12. Batra P., Mathur P., Misra M. C. (2016) Aeromonas spp.: An Emerging Nosocomial Pathogen. Journal of laboratory physicians. vol. 8, no. 1, pp. 1–4. https://doi.org/10.4103/0974-2727.176234.
13. Brandi G., Sisti M., Schiavano G. F., Salvaggio L., Albano, A. (1996) Survival of Aeromonas hydrophila, Aeromonas caviae and Aeromonas sobria in soil. Journal of Applied Bacteriology, vol. 81, no. 4, pp. 439–444. doi:10.1111/j.1365-2672.1996.tb03531.x.
14. Alhazmi M.I. (2015) Isolation of Aeromonas spp. from Food Products: Emerging Aeromonas Infections and Their Significance in Public Health. J AOAC Int., vol. 98. no. 4, pp. 927-9. doi: 10.5740/jaoacint.14-257. PMID: 26268974.
15. Burke V., Robinson J., Gracey M., Peterson D., Partridge K. (1984) Isolation of Aeromonas hydrophila from a metropolitan water supply: seasonal correlation with clinical isolates. Applied and environmental microbiology, vol. 48. no. 2, pp. 361–366. https://doi.org/10.1128/AEM.48.2.361-366.1984.
16. Cao H., He S., Lu L., Hou L. (2010) Characterization and Phylogenetic Analysis of the Bitrichous Pathogenic Aeromonas hydrophila Isolated from Diseased Siberian sturgeon (Acipenser baerii). The Israeli Journal of Aquaculture – Bamidgeh, vol. 62, no. 3, pp. 181-188. http://cmsadmin.atp.co.il/Content_siamb/editor/62_3_7_Cao.pdf.
17. Kayis S., Er A., Kangel P., Kurtoğlu I.Z. (2017) Bacterial pathogens and health problems of Acipenser gueldenstaedtii and Acipenser baerii sturgeons reared in the eastern Black Sea region of Turkey. Iran J Vet Res., vol. 18. no. 1, pp. 18-24.
18. Meng Y., Xiao H.B., Zeng, L.B. (2011) Isolation and identification of the hemorrhagic septicemia pathogen from Amur sturgeon, Acipenser schrenckii. Journal of Applied Ichthyology, vol. 27, pp. 799-803. https://doi.org/10.1111/j.1439-0426.2011.01717.x.
19. Di J., Zhang S., Huang J., Du H., Zhou Y., Zhou Q., Wei Q. (2018) Isolation and identification of pathogens causing haemorrhagic septicaemia in cultured Chinese sturgeon (Acipenser sinensis). Aquac Res., vol. 49, pp. 3624– 3633. https://doi.org/10.1111/are.13830.
20. Yazdanpanah Laleh, Zorriehzahra Jalil, Rokhbakhsh Zamin Farokh, Kazemi-Pour Nadia (2020) Isolation, biochemical and molecular detection of Aeromonas hydrophila from cultured Oncorhynchus mykiss. Iranian Journal of Fisheries Sciences, pp. 1-15. DOI: 10.22092\ijfs.2020.122060.
21. Guz L., Kozińska A. (2004) Antibiotic susceptibility of Aeromonas hydrophila and A. sobria isolated from farmed carp (Cyprinus carpio L.). Bull Vet Inst Pulawy., vol. 48, pp. 391-395. http://www.piwet.pulawy.pl/bulletin/images/stories/pdf/20044/20044391396.pdf.
22. Laith A. R., Najiah M. (2014) Aeromonas hydrophila: antimicrobial susceptibility and histopathology of isolates from diseased catfish, Clarias gariepinus (Burchell). Journal of Aquaculture Research and Development, vol. 5, no. 2, pp. 215 ref.44. https://www.cabdirect.org/cabdirect/abstract/20143259523.
23. Anyanwu Madubuike, Chah Kennedy, Shoyinka Shodeinde (2014) Antibiogram of aerobic bacteria isolated from skin lesions of African catfish cultured in Southeast, Nigeria. International Journal of Fisheries and Aquatic Studies, vol. 2, pp. 134-141.
24. Roy A., Singha J., Abraham T.J. (2018) Histopathology of Aeromonas caviae infection in challenged Nile tilapia Oreochromis niloticus (Linnaeus, 1758). International Journal of Aquaculture, vol. 8, no. 20, pp. 151-155. doi: 10.5376/ija.2018.08.0020.
25. Ashiru A., Uaboi-Egbeni P.O., Oguntowo J.E., Idika C.N. (2011) Isolation and Antibiotic Profile of Aeromonas Species from Tilapia Fish (Tilapia nilotica) and Catfish (Clarias betrachus). Pakistan Journal of Nutrition, vol. 10, pp. 982-986.
26. Gholamhosseini A, Taghadosi V, Shiry N, Akhlaghi M, Sharifiyazdi H, Soltanian S, Ahmadi N. (2018) First isolation and identification of Aeromonas veronii and Chryseobacterium joostei from reared sturgeons in Fars province. Iran. Vet Res Forum. Spring., vol. 9, no. 2, pp. 113-119. doi: 10.30466/VRF.2018.30826. PMID: 30065799; PMCID: PMC6047580.
27. Mohamed A Hassan, E.A. Noureldin, Mahmoud A. Mahmoud, Nabil A. Fita, (2017) Molecular identification and epizootiology of Aeromonas veronii infection among farmed Oreochromis niloticus in Eastern Province, KSA. The Egyptian Journal of Aquatic Research, vol. 43, pp. 161-167, DOI: https://doi.org/10.1016/j.ejar.2017.06.001.
28. Sun J., Zhang X., Gao X., Jiang Q., Wen Y., Lin L. (2016) Characterization of Virulence Properties of Aeromonas veronii Isolated from Diseased Gibel Carp (Carassius gibelio). Int J Mol Sci. Apr., vol. 17, no. 4, pp. 496. doi: 10.3390/ijms17040496. PMID: 27043558; PMCID: PMC4848952.
29. Chen F., Sun J., Han Z., Yang X., Xian J. A., Lv A., Hu X., Shi H. (2019) Isolation, Identification and Characteristics of Aeromonas veronii From Diseased Crucian Carp (Carassius auratus gibelio). Frontiers in microbiology, vol. 10, pp. 2742. https://doi.org/10.3389/fmicb.2019.02742.
30. Fryer J.L., Hedrick R.P., Park J.W., Hah Y.C. (1988) Isolation of Aeromonas salmonicida from masu salmon in the Republic of Korea. J Wildl Dis., vol. 4, no. 2, pp. 364-5. doi: 10.7589/0090-3558-24.2.364. PMID: 3373645.
31. Chapman P.F., Cipriano R.C., Teska J.D. (1991) Isolation and phenotypic characterization of an oxidase-negative Aeromonas salmonicida causing furunculosis in coho salmon (Oncorhynchus kisutch). J Wildl Dis., vol. 27, no. 1, pp. 61-7. doi: 10.7589/0090-3558-27.1.61. PMID: 1850808.
32. Nikapitiya C., Dananjaya S.H.S., Chandrarathna H.P.S.U. et al. (2019) Isolation and Characterization of Multidrug Resistance Aeromonas salmonicida subsp. salmonicida and Its Infecting Novel Phage ASP-1 from Goldfish (Carassius auratus). Indian J Microbiol., vol. 59, pp. 161–170. https://doi.org/10.1007/s12088-019-00782-5.
33. Zhou Y., Yu L., Nan Z. et al. (2019) Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC Infect Dis., vol. 19, pp. 158. https://doi.org/10.1186/s12879-019-3766-0.
34. Alsaid Milud (2015) Virulence Genes Detection of Aeromonas hydrophila Originated from Diseased Freshwater Fishes. Advances in Environmental Biology, vol. 9, pp. 22-26.
35. Rasmussen-Ivey C.R., Figueras M.J., McGarey D., Liles M.R. (2016) Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front. Microbiol., vol. 7, pp. 1337. doi: 10.3389/fmicb.2016.01337.
36. Pollard D. R., Johnson W. M., Lior H., Tyler S. D., Rozee K. R. (1990) Detection of the aerolysin gene in Aeromonas hydrophila by the polymerase chain reaction. Journal of clinical microbiology, vol. 28, no. 11, pp. 2477–2481. https://doi.org/10.1128/JCM.28.11.2477-2481.1990.
37. Vilches S., Jimenez N., Tomas J. M., Merino S. (2009) Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. Appl. Environ. Microbiol., vol. 75, pp. 6382–6392. doi: 10.1128/AEM.00222-09
38. Wang G., Clark C. G., Liu C., Pucknell C., Munro C. K., Kruk T. M., Caldeira R., Woodward D. L., Rodgers F. G. (2003) Detection and characterization of the hemolysin genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. Journal of clinical microbiology, vol. 41, no. 3, pp. 1048–1054. https://doi.org/10.1128/jcm.41.3.1048-1054.2003.
39. Dallaire-Dufresne S., Tanaka K. H., Trudel M. V., Lafaille A., Charette S. J. (2014) Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Veterinary Microbiology, vol. 169, no. 1-2. pp. 1–7. doi: 10.1016/j.vetmic.2013.06.025.
40. Stratev D., Odeyemi O.A. (2017) An overview of motile Aeromonas septicaemia management. Aquacult Int., vol. 25, pp. 1095–1105. https://doi.org/10.1007/s10499-016-0100-3.
41. Jiang N. et al. (2016) Overview of sturgeon pathogenic disease research. Journal of Hydroecology, vol. 37, pp. 1–9.
42. Masuyer G. (2020) Crystal Structure of Exotoxin A from Aeromonas Pathogenic Species. Toxins, vol. 12, no. (6) 397, pp. 1-14. doi:10.3390/toxins12060397.
43. Hossain M. J., Sun D., McGarey D. J., Wrenn S., Alexander L. M., Martino M. E., Xing Y., Terhune J. S., Liles M. R. (2014) An Asian origin of virulent Aeromonas hydrophila responsible for disease epidemics in United States-farmed catfish. mBio, vol. 5, no. 3st, e00848-14. https://doi.org/10.1128/mBio.00848-14.
44. Santi M., Pastorino P., Foglini C., Righetti M., Pedron C., Prearo M. (2019) A survey of bacterial infections in sturgeon farming in Italy. J Appl Ichthyol., vol. 35, pp. 275– 282. https://doi.org/10.1111/jai.13802.
45. Timur G., Akaylı T., Korun J., Yardımcı R.E. (2010) A study on bacterial haemorrhagic septicemia in farmed young russian sturgeon in Turkey (Acipencer gueldenstaedtii). Journal of Aquatic Sciences, vol. 25, pp. 19-26.
46. Zhang D., Xu D.-H., Shoemaker C. (2016) Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquaculture Reports, vol. 3, pp. 18–23. doi:10.1016/j.aqrep.2015.11.003.
47. O'Brien D., Mooney J., Ryan D., Powell E., Hiney Maura, Smith P., Powell R. (1994) Detection of Aeromonas salmonicida causal agent of furunculosis in Salmonid fish from the tank effluent of hatchery-reared Atlantic salmon smolts. Applied and environmental microbiology, vol. 60, pp. 3874-7. 10.1128/AEM.60.10.3874-3877.1994.
48. Coleman G., Whitby P. W. (1993) A comparison of the amino acid sequence of the serine protease of the fish pathogen Aeromonas salmonicida subsp. salmonicida with those of other subtilisin-type enzymes relative to their substrate-binding sites. Journal of General Microbiology, vol. 139, no. 2, pp. 245–249. doi:10.1099/00221287-139-2-245.
49. Lin Qiang, Li Jie, Fu Xiaozhe, Liu Lihui, Liang Hongru, Niu Yinjie, Huang Chuni, Huang Zhibin, Mo Zhaolan, Li Ningqiu (2019) Hemorrhagic gill disease of Chinese perch caused by Aeromonas salmonicida subsp. salmonicida in China. Aquaculture, vol. 519, 734775. https://doi.org/10.1016/j.aquaculture.2019.734775.
50. Wedemeyer G. (1970) The role of stress in the disease resistance of fishes and shellfishes. Spec. Publ., no. 5, Am. Fish. Soc., Washington, D.C., pp. 30-35.
51. Mateus A. P., Power D. M., Canário A. V. M. (2017) Stress and Disease in Fish. Fish Diseases, pp. 187–220. doi:10.1016/b978-0-12-804564-0.00008-9.
52. Gao J., Xi B., Chen K., Song R., Qin T., Xie J., Pan L. (2019) The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen, vol. 8, no. 4, e00664. doi: 10.1002/mbo3.664. Epub Jun 13. PMID: 29897673; PMCID: PMC6460269.
53. Baron S, editor. (1996) Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston, 1273 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK7627/.
54. Meyer J.M. (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol., vol. 174. no. 3, pp. 135-42. doi: 10.1007/s002030000188. PMID: 11041343.
55. Noura, Salih K.M., Jusuf N.H., Hamid A.A., Yusoff W.M. (2009) High prevalence of Pseudomonas species in soil samples from Ternate Island-Indonesia. Pak J Biol Sci., vol. 12, no. 14, pp. 1036-40. doi: 10.3923/pjbs.2009.1036.1040. PMID: 19947183.
56. Green S. K., Schroth M. N., Cho J. J., Kominos S. K., Vitanza-jack V. B. (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Applied microbiology, vol. 28, no. 6, pp. 987–991.
57. Jaya Tripathi1P. T. S. R. E. (2011) In Vitro Study of Pseudomonas spp. Isolated from Soil. Journal of Phytology, vol. 3, no. 4. https://updatepublishing.com/journal/index.php/jp/article/view/2267.
58. Sah S., Singh R. (2016) Phylogenetical coherence of Pseudomonas in unexplored soils of Himalayan region. 3 Biotech., vol. 6, no. 2, pp. 170. https://doi.org/10.1007/s13205-016-0493-8.
59. Khan N. H., Ishii Y., Kimata-Kino N., Esaki H., Nishino T., Nishimura M., Kogure K. (2007) Isolation of Pseudomonas aeruginosa from Open Ocean and Comparison with Freshwater, Clinical, and Animal Isolates. Microbial Ecology, vol. 53, no. 2, pp. 173–186. doi:10.1007/s00248-006-9059-3.
60. Vaz-Moreira I., Nunes O. C., Manaia C. M. (2012) Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Science of The Total Environment, vol. 426, pp. 366–374. doi:10.1016/j.scitotenv.2012.03.046.
61. Flores Ribeiro A., Bodilis J., Alonso L., Buquet S., Feuilloley M., Dupont J.-P., Pawlak B. (2014) Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Science of The Total Environment, vol. 490, pp. 370–378. doi:10.1016/j.scitotenv.2014.05.012.
62. Gaffney P., Colegrove K., Gulland F., Byrne B., Jang S., Edgar K., Lowenstine L. J. (2008) Pathologic, microbiologic and epidemiologic characterization of Pseudomonas sp. In California sea lions (Zalophus californianus) and Pacific harbor seals (Phoca vitulina). In Proceedings of the 39th Annual Conference of the International Association for Aquatic Animal Medicine, pp. 10-14. https://www.vin.com/apputil/content/defaultadv1.aspx?id=3863207&pid=11259.
63. Magdy I.H., El-Hady M., Ahmed H.A., Elmeadawy S.A., Kenwy A.M. (2014) A contribution on Pseudomonas aeruginosa infection in African Catfish (Clarias gariepinus). Research journal of pharmaceutical, biological and chemical sciences, vol. 5, pp. 575-588.
64. Brunetti Rinaldo, Gasparri Filippo, Marturano Stefano, Prearo Marino (2006) Pseudomonas fluorescens infection in farmed Siberian sturgeon (Acipenser baeri). Ittiopatologia, vol. 3, pp. 221-226.
65. El-Barbary Manal, Hal Ahmed (2016) Isolation and molecular characterization of some bacterial pathogens in El-Serw fish farm, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, vol. 20, pp. 115-127. 10.21608/ejabf.2016.11183.
66. Altinok Ilhan, Kayis Sevki, Capkin Erol (2006) Pseudomonas putida infection in rainbow trout. Aquaculture, vol. 261, pp. 850-855. 10.1016/j.aquaculture.2006.09.009.
67. Haghi F., Zeighami H., Monazami A., Toutouchi F., Nazaralian S., Naderi G. (2018) Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microbial Pathogenesis, vol. 115, pp. 251–256. doi:10.1016/j.micpath.2017.12.052.
68. Benie C., Dadie A., Guessennd N., N’gbesso-Kouadio N., Désiré K., Coulibaly N. D., Aka S., Dako E., Djè K., Dosso M. (2017) Characterization of virulence potential of Pseudomonas aeruginosa isolated from bovine meat, fresh fish, and smoked fish. European Journal of Microbiology and Immunology, vol. 7, no. 1, pp. 55–64. doi:10.1556/1886.2016.00039.
69. El-Hady M. A., Samy A. A. (2011) Molecular typing of Pseudomonas species isolated from some cultured fishes in Egypt. Global Veterinaria, vol. 7, no. 6, pp. 576-580.
70. Zhang J. T., Zhou S. M., An S. W., Chen L., Wang G. L. (2014) Visceral granulomas in farmed large yellow croaker, Larimichthys crocea (Richardson), caused by a bacterial pathogen, Pseudomonas plecoglossicida. Journal of fish diseases, vol. 37, no. 2, pp. 113-121.
71. Sivakami R., Premkishore G., Chandran M. R. (1996) Occurrence and distribution of potentially pathogenic Enterobacteriaceae in carps and pond water in Tamil Nadu, India. Aquaculture Research, vol. 27, no. 5, pp. 375–378. doi:10.1111/j.1365-2109.1996.tb01263.x.
72. Raman R., Prakash C., Makesh M., Pawar N.A. (2013) Environmental stress mediated diseases of fish: an overview. Advances in Fish Research, vol. 5, pp. 141–158.
73. Algammal A.M., Mabrok M., Sivaramasamy E. et al. (2020) Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci. Rep., vol. 10, 15961. https://doi.org/10.1038/s41598-020-72264-4.
74. Sergaliyev N.H., Absatirov G.G., Tumenov A.N., Sariyev B.T., Ginayatov N.S. (2017) Nosological description of fish pathologies in RAS. Journal of Pharmaceutical Sciences and Research, vol. 9, pp. 1637-1641.
75. Pitt T. L., Barer M. R. (2012) Classification, identification and typing of micro-organisms. Medical Microbiology, pp. 24–38. https://doi.org/10.1016/B978-0-7020-4089-4.00018-4.
76. Sudheesh P. S., Al-Ghabshi A., Al-Mazrooei N., Al-Habsi S. (2012) Comparative pathogenomics of bacteria causing infectious diseases in fish. International journal of evolutionary biology, 457264. https://doi.org/10.1155/2012/457264.
77. Ruiz P., Vidal J.M., Sepúlveda D., Torres C., Villouta G., Carrasco C., Aguilera F., Ruiz‐Tagle N., Urrutia, H. (2020) Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems. Rev Aquacult., vol. 12, pp. 1478-1494. https://doi.org/10.1111/raq.12392.
78. Franco-Duarte R., Černáková L., Kadam S., Kaushik K. S., Salehi B., Bevilacqua A., Corbo M. R., Antolak H., Dybka-Stępień K., Leszczewicz M., Relison Tintino S., Alexandrino de Souza V. C., Sharifi-Rad J., Coutinho H., Martins N., Rodrigues C. F. (2019) Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. Microorganisms, vol. 7, no. 5, pp. 130. https://doi.org/10.3390/microorganisms7050130.
79. Carter G. R. (1990) Pseudomonas, Aeromonas, Plesiomonas, and Vibrio. Diagnostic Procedure in Veterinary Bacteriology and Mycology, pp. 77–86. doi:10.1016/b978-0-12-161775-2.50011-6.
80. Handfield M., Simard P., Letarte R. (1996) Differential media for quantitative recovery of waterborne Aeromonas hydrophila. Appl Environ Microbiol. vol. 62, no. 9, pp. 3544-7. doi: 10.1128/AEM.62.9.3544-3547.1996. PMID: 8795251; PMCID: PMC168157.
81. Aeromonas Agar. (2017) Selective medium for the isolation of Aeromonas hydrophila from environmental samples. Rev.0 / 13.12.2017. http://www.liofilchem.net/login/pd/ifu/10406_IFU.pdf.
82. King E.O., Ward M.K., Raney D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med., vol. 44, no. 2, pp. 301-7. PMID: 13184240.
83. Goto S., Enomoto S. Nalidixic acid cetrimide agar. (1970) A new selective plating medium for the selective isolation of Pseudomonas aeruginosa. Jpn J Microbiol., vol. 14, no. 1, pp. 65-72. doi: 10.1111/j.1348-0421.1970.tb00492.x. PMID: 4984597.
84. Pseudomonas Agar. (2015) Base Selective medium for detection and enumeration of Pseudomonas spp., according to ISO 13720, ISO/TS 11059 and ISO 16266. Rev.2 / 02.12.2015. https://www.humeau.com/media/blfa_files/TC_Pseudomonas-gelose-base_EN_020718_5137bad7135953d0074481fa4e64a8b4.pdf.
85. 60788 King Agar A (Pseudomonas Agar for Pyocyanin; Pseudomonas Agar P; Tech Agar) Medium for the confirmation of Pseudomonas aeruginosa by pyocyanin formation. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Datasheet/1/60788dat.pdf.
86. Altinok I. (2011) Multiplex PCR assay for detection of four major bacterial pathogens causing rainbow trout disease. Dis Aquat Organ., vol. 93, no. 3, pp. 199-206. doi: 10.3354/dao02300. PMID: 21516972.
87. Wang L.T., Lee F.L., Tai C.J., Kasai H. (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol., vol. 57, no. Pt 8, pp. 1846-1850. doi: 10.1099/ijs.0.64685-0. PMID: 17684269.
88. Kasai H., Watanabe K., Gasteiger E., Bairoch A., Isono K., Yamamoto S., Harayama S. (1998) Construction of the gyrB Database for the Identification and Classification of Bacteria. Genome Inform Ser Workshop Genome Inform., vol. 9, pp. 13-21. PMID: 11072317.
89. World Health Organization (2006) WHO Report of a Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance. World Health Organization, Geneva, Switzerland, 107 p.
90. Zhang S., Abbas M., Rehman M.U., Huang Y., Zhou R., Gong S., Yang H., Chen S., Wang M., Cheng A. (2020) Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. Environ Pollut., vol. 266, no. Pt 2, 115260. doi: 10.1016/j.envpol.2020.115260. Epub 2020 Jul 15. PMID: 32717638.
91. Lulijwa R., Rupia E. J., Alfaro A. C. (2019) Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, doi:10.1111/raq.12344.
92. Hossain S., Dahanayake P., De Silva B., Wickramanayake M., Wimalasena S., Heo G.‐J. (2019) Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Lett Appl Microbiol., vol. 68, pp. 370-377. https://doi.org/10.1111/lam.13138
93. Matyar F., Akkan T., Uçak Y., Eraslan B. (2010) Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environ Monit Assess., vol. 167, no. 1-4, pp. 309-20. doi: 10.1007/s10661-009-1051-1. Epub 2009 Jun 24. PMID: 19551480.
94. Preena P. G., Swaminathan T. R., Kumar V. J. R., Singh I. S. B. (2020) Antimicrobial resistance in aquaculture: a crisis for concern. Biologia, vol. 75, pp. 1497–1517 doi: 10.2478/s11756-020-00456-4.

Загрузки

Опубликован

2021-06-30