TOR сигнальная система в растениях
DOI:
https://doi.org/10.26577/eb-2019-2-1413Аннотация
Мишень рапамицина млекопитающих (Mammalian target of rapamycin (mTOR)) представляет собой серин-треониновую киназу, которая функционирует в качестве центрального элемента в сигнальном пути, отвечающем за клеточную реакцию на стрессы и доступность питательных веществ/энергии, и обеспечивает соответствующие изменения процессов роста, пролиферации и выживания клеток, а также синтеза белка. До настоящего времени изучение молекулярных механизмов TOR сигнальной системы в основном было сосредоточено на клетках дрожжей и животных. Растительные организмы, в большинстве своем неподвижные и ограниченные к одному месту обитания, обязаны постоянно подстраивать темпы роста (выраженного в увеличении размеров органов) и развития (состоящего в формировании новых органов и структур) в зависимости от наличия питательных веществ. Кроме того, растения также преодолевают неблагоприятные внешние факторы, не имея возможности их физически избежать. TOR сигнальная система является центром регуляторных сетей поддержания баланса между защитой и ростом у всех эукариот. Следовательно, раскрытие молекулярных механизмов TOR сигнальной системы у растений является ключом к контролю устойчивости к стрессу и продуктивности растений. Последние достижения в изучении пути передачи сигналов TOR у растений позволяют предположить значительное совпадение клеточных процессов и процессов развития, которые регулируются TOR у растений, животных и людей. Целью данного обзора является раскрытие последних достижений в исследованиях пути передачи сигналов TOR у растений.
Ключевые слова: TOR, млекопитающие, растения, водоросли, Saccharomyces cerevisiae, рапамицин, аутофагия, раптор.
Библиографические ссылки
2. Sehgal S.N., Baker H. and Vezina, C. (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo) 28, 727-732.
3. Sabatini D.M., Erdjument-Bromage, H., Lui M., Tempst P. and Snyder S.H. (1994). RAFT1: A mammalian protein that binds to FKBP12 in a rapamycindependent fashion and is homologous to yeast TORs. Cell 78, 35-43.
4. Menand B., Desnos T., Nussaume L., Berger F., Bouchez D., Meyer C. and Robaglia C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. USA 99, 6422-6427.
5. Gangloff Y.-G., Mueller M., Dann S.G., Svoboda P., Sticker M., Spetz J.-F., Um S. H., Brown E.J., Cereghini S., Thomas G. et al. (2004). Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell. Biol. 24, 9508-9516.
6. Kang S.A., Pacold M.E., Cervantes C.L., Lim, D., Lou, H.J., Ottina, K., Gray, N.S., Turk, B.E., Yaffe, M.B. and Sabatini, D.M. (2013). mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566.
7. Ren M., Venglat P., Qiu S., Feng L., Cao Y., Wang E., Xiang D., Wang J., Alexander D., Chalivendra S. et al. (2012). Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24, 4850-4874.
8. Cafferkey R, McLaughlin M, Young P, Johnson R, Livi G (1994). Yeast TOR (DRR) proteins: amino-acid sequence alignment and identification of structural motifs. Gene 141:133–36.
9. Shi L., Wu Y. and Sheen J. (2018). TOR signaling in plants: conservation and innovation Development. 145, dev160887. doi:10.1242/dev.160887
10. Maegawa K., Takii R., Ushimaru T., Kozaki A.. (2015). Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast Mol Genet Genomics. Oct; 290(5):2019-30.
11. Xiong F., Dong P., Liu M., Xie G., Wang K., Zhuo F., Feng L., Yang L., Li Z, Ren M. Tomato FK506. (2016). Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR). Front Plant Sci. 2016 Nov 18; 7:1746.
12. Agredano-Moreno L.T, Reyes de la Cruz H, Martínez-Castilla L.P, Sánchez de Jiménez E. (2007). Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Mol Biosyst. Nov; 3(11):794-802.
13. Deng K., Dong P., Wang W., Feng L., Xiong F., Wang K., Zhang S., Feng S., Wang B., Zhang J. et al. (2017). The TOR pathway is involved in adventitious root formation in Arabidopsis and potato. Front. Plant Sci. 8, 784.
14. Song Y., Zhao G., Zhang X.Y., Li L.X., Xiong F.J., Zhuo F.P., et al. (2017). The crosstalk between target of rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton. Sci. Rep. 7:45830.
15. Heitman J., Movva N.R. and Hall M.N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909.
16. Stan R., Mclaughlin M. M., Cafferkey R., Johnson R.K., Rosenberg M., Livi G.P. (1994). Interaction between Fkbp12-Rapamycin and Tor Involves a Conserved Serine Residue. Journal of Biological Chemistry 269, 32027- 32030.
17. Mukhopadhyay S., Frias M.A., Chatterjee A., Yellen P., Foster D.A. (2016). The Enigma of Rapamycin Dosage. Molecular Cancer Therapeutics 15, 347-353.
18. Sarbassov D.D., Ali S.M., Sengupta S., Sheen J.-H., Hsu P.P., Bagley A.F., Markhard A.L. and Sabatini D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159-168.
19. Thoreen C.C. (2017). The molecular basis of mTORC1-regulated translation. Biochemical Society Transactions 45, 213-221.
20. Zhao J., Zhai B., Gygi S. P., Goldberg A. L. (2015). mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proceedings of the National Academy of Sciences, USA 112, 15790-15797.
21. Vezina C., Kudelski A., Sehgal S.N. (1975). Rapamycin (AY-22,989), a newantifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28:721–26.
22. Schreiber S.L., Crabtree G.R. (1992). The mechanism of action of cyclosporine and FK506. Immunol. Today 13:136–42.
23. Tocci M., Matkovich D., Collier K., Kwok P., Dumont F., Lin S., Degudicibus S., Siekierka J., Chin J., Hutchinson N. (1989). The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J. Immunol. 143:718–26.
24. Crespo J.L., Diaz-Troya S., Florencio F.J. (2005). Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiololgy 139, 1736-1749.
25. Mukaida S., Ogawa T., Ohishi K., Tanizawa Y., Ohta D., Arita M. (2016). The effect of rapamycin on biodiesel- producing protist Euglena gracilis. Bioscience Biotechnology and Biochemistry 80, 1223-1229.
26. Prioretti L., Avilan L., Carriere F., Montane M. H., Field B., Gregori G., Menand B., Gontero B. (2017). The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime. Algal Research 26, 265-274.
27. Imamura S., Ishiwata A., Watanabe S., Yoshikawa H., Tanaka K. (2013). Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae. Biochemical and Biophysical Research Communications 439, 264-269.
28. Deng K., Yu L., Zheng X., Zhang K., Wang W., Dong P., Zhang J., Ren M. (2016). Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis. Frontiers in Plant Science 7, 291
29. Mahfouz, M.M., Kim, S., Delauney, A.J. and Verma, D.P. (2006). Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18, 477-490.
30. Montané M.-H. and Menand B. (2013). ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J. Exp. Bot. 64, 4361-4374.
31. Sormani R., Yao L., Menand B., Ennar N., Lecampion C., Meyer C., Robaglia C. (2007). Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biology 7, 26.
32. Vezina C., Kudelski A., Sehgal S. N. (1975). Rapamycin (Ay-22,989), a New Antifungal Antibiotic .1. Taxonomy of Producing Streptomycete and Isolation of Active Principle. Journal of Antibiotics 28, 721-726.
33. Choi J., Chen J., Schreiber S. L., Clardy J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239-242.
34. Xu Q., Liang S.P., Kudla J., Luan S. (1998). Molecular characterization of a plant FKBP12 that does not mediate action of FK506 and rapamycin. The Plant Journal 15, 511-519.
35. Leiber R.-M., John F., Verhertbruggen Y., Diet A., Knox J.P. and Ringli C. (2010). The TOR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell 22, 1898-1908.
36. Xiong Y. and Sheen J. (2012). Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J. Biol. Chem. 287, 2836-2842.
37. Thoreen C.C., Sabatini D.M. (2009). Rapamycin inhibits mTORC1, but not completely. Autophagy 5, 725-726. Van Dam T. J.P., Zwartkruis F. J.T., Bos J.L., Snel B. 2011. Evolution of the TOR Pathway. Journal of Molecular Evolution 73, 209-220.
38. Wicker L.S., Boltz R. C., Jr., Matt V., Nichols E.A., Peterson L.B., Sigal N. H. (1990). Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. European Journal of Immunology 20, 2277-2283.
39. Xiong Y., McCormack M., Li L., Hall Q., Xiang C. and Sheen J. (2013). Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181-186.
40. Vespa L., Vachon G., Berger F., Perazza D., Faure J.D., Herzog M. (2004). The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication. Plant Physiology 134, 1283-1292.
41. Gold L.I., Sung J.J., Siebert J.W., Longaker M.T. (1997). Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. American Journal of Pathology 150, 209-222.
42. Aghdasi B., Ye K., Resnick A., Huang A., Ha H.C., Guo X., Dawson T. M., Dawson V. L., Snyder S. H. (2001). FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proceedings of the National Academy of Sciences, USA 98, 2425-2430.
43. Alavilli H., Lee H., Park M., Yun D.J., Lee B. H. (2018). Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. Plant Cell Reports 37, 453-465.
44. Osmulski P. A., Gaczynska M. (2013). Rapamycin allosterically inhibits the proteasome. Molecular Pharmacology 84, 104-113.
45. Anderson, G.H., Veit, B. and Hanson, M.R. (2005). The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol. 3, 12.
46. Diaz-Troya, S., Florencio, F.J. and Crespo, J.L. (2008). Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Eukaryot. Cell 7, 212-222.
47. Kravchenko A., Citerne S., Jéhanno I., Bersimbaev R.I., Veit B., Meyer C. and Leprince A.-S. (2015). Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochem. Biophys. Res. Commun. 467, 992-997.
48. Moreau M., Azzopardi M., Clement G., Dobrenel T., Marchive C., Renne C., Martin-Magniette M.-L., Taconnat L., Renou J.-P., Robaglia C. et al. (2012). Mutations in the Arabidopsis homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24, 463-481.
49. Salem M.A., Li Y., Wiszniewski A. and Giavalisco P. (2017). Regulatoryassociated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J. 92, 525-545.
50. Tatebe H. and Shiozaki K. (2017). Evolutionary conservation of the components in the TOR signaling pathways. Biomolecules 7, 77.
51. Yip C.K., Murata K.,Walz T., Sabatini D.M. and Kang S.A. (2010). Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38, 768-774.
52. Aylett C.H.S., Sauer E., Imseng S., Boehringer D., Hall M.N., Ban N. and Maier T. (2016). Architecture of human mTOR complex 1. Science 351, 48-52.
53. Yang H., Rudge D.G., Koos J.D., Vaidialingam B., Yang H.J. and Pavletich N.P. (2013). mTOR kinase structure, mechanism and regulation. Nature 497, 217-223.
54. Ben-Sahra I. and Manning B.D. (2017). mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell Biol. 45, 72-82.
55. Dobrenel T., Caldana C., Hanson J., Robaglia C., Vincentz M., Veit B. and Meyer C. (2016a). TOR signaling and nutrient sensing. Annu. Rev. Plant Biol. 67, 261-285.
56. González, A. and Hall, M. N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397-408.
57. Calvo S.E., Pagliarini D.J. and Mootha V.K. (2009). Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. USA 106, 7507-7512.
58. Rahmani F., Hummel M., Schuurmans J., Wiese-Klinkenberg A., Smeekens S. and Hanson J. (2009). Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiol. 150, 1356-1367.
59. Johnstone T.G., Bazzini A.A. and Giraldez A.J. (2016). Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J. 35, 706-723.
60. Schepetilnikov M., Dimitrova M., Mancera-Martı́nez E., Geldreich A., Keller M. and Ryabova L.A. (2013). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 32, 1087-1102.
61. Schepetilnikov M., Kobayashi K., Geldreich A., Caranta C., Robaglia C., Keller M. and Ryabova L.A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J. 30, 1343-1356.
62. Thiébeauld O., Schepetilnikov M., Park H.-S., Geldreich A., Kobayashi K., Keller M., Hohn T. and Ryabova L. A. (2009). A new plant protein interacts with eIF3 and 60S to enhance virus-activated translation re-initiation. EMBO J. 28, 3171-3184.
63. Lee D.-H., Park S.J., Ahn C.S. and Pai H.-S. (2017). MRF family genes are involved in translation control, especially under energy-deficient conditions, and their expression and functions are modulated by the TOR signaling pathway. Plant Cell 29, 2895-2920.
64. Ahn C.S., Han J.-A., Lee H.-S., Lee S. and Pai H.-S. (2011). The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23, 185-209.
65. Ahn C.S., Ahn H.-K. and Pai H.-S. (2015). Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J. Exp. Bot. 66, 827-840.
66. Saxton R.A. and Sabatini D.M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976.
67. Li L. and Sheen J. (2016). Dynamic and diverse sugar signaling. Curr. Opin. Plant Biol. 33, 116-125.
68. Kim S.G., Hoffman G. R., Poulogiannis G., Buel G.R., Jang Y.J., Lee K.W., Kim B.-Y., Erikson R.L., Cantley L.C., Choo A.Y. et al. (2013). Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172-185.
69. David-Morrison G., Xu Z., Rui Y.-N., Charng W.-L., Jaiswal M., Yamamoto S., Xiong B., Zhang K., Sandoval H., Duraine L. et al. (2016). WAC regulates mTOR activity by acting as an adaptor for the TTT and Pontin/Reptin complexes. Dev. Cell 36, 139-151.
70. Schepetilnikov M., Makarian J., Srour O., Geldreich A., Yang Z., Chicher J., Hammann P. and Ryabova L.A. (2017). GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO J. 36, 886-903.
71. Baena-González E., Rolland F., Thevelein J. M. and Sheen J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938-942.
72. Broeckx T., Hulsmans S. and Rolland F. (2016). The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67, 6215-6252.
73. Herzig S. and Shaw R.J. (2018). AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121-135.
74. Wurzinger B., Nukarinen E., Nä gele T., Weckwerth W. and Teige M. (2018). The SnRK1 kinase as central mediator of energy signalling between different organelles. Plant Physiol. 176, 1085-1094.
75. Gwinn D. M., Shackelford D. B., Egan D. F., Mihaylova M. M., Mery A., Vasquez D. S., Turk B.E. and Shaw ,R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226.
76. Nukarinen E., Nä gele T., Pedrotti L., Wurzinger B., Mair A., Landgraf R., Bö rnke F., Hanson J., Teige M., Baena-Gonzalez E. et al. (2016). Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci. Rep. 6, 31697.
77. Russell R. C., Yuan H.-X. and Guan K.-L. (2014). Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57.
78. Puente C., Hendrickson R. C. and Jiang X. (2016). Nutrient-regulated hosphorylation of ATG13 inhibits starvation-induced autophagy. J. Biol. Chem. 291, 6026-6035.
79. Settembre C., Zoncu, R., Medina D.L., Vetrini F., Erdin S., Erdin S.U., Huynh T., Ferron M., Karsenty G., Vellard M.C. et al. (2012). A lysosome-tonucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108.
80. Liu Y. and Bassham D.C. (2010). TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE 5, e11883.
81. Pu Y., Luo X. and Bassham D.C. (2017). TOR-dependent and –independent pathways regulate autophagy in Arabidopsis thaliana. Front. Plant Sci. 8, 1204.
82. Suttangkakul A., Li F., Chung T. and Vierstra R.D. (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779.
83. Marshall R.S. and Vierstra R.D. (2018). Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol. 69, 173-208.
84. Munemasa S., Hauser F., Park J., Waadt R., Brandt B., and Schroeder J.I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol. 28, 154–162.
85. Zhao Y., Chan Z., Gao J., Xing L., Cao M., Yu C., Hu Y., You J., Shi H., Zhu Y., et al. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl. Acad. Sci. USA 113, 1949–1954.
86. Wang P., Xue L., Batelli G., Lee S., Hou Y.J., Van Oosten M.J., Zhang H., Tao W.A., and Zhu J.K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. USA 110, 11205–11210.
87. Wang P., Zhao Y., Li Zh., Chuan-Chih Hsu, Liu X., Fu L., Yueh-Ju Hou, Du Y., Xie Sh., Zhang Ch., Gao J., Cao M., Huang X.,. Zhu Y, Tang K., Wang X., Tao W. A., Xiong Y., and Jian-Kang Zhu. (2018). Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response, Molecular Cell 69, 1–13, January 4.