Взаимодействие miRNA семейства miR-1273 с mRNA генов, регулирующих клеточный цикл и апоптоз. Жасушалық цикл мен апоптозды реттейтін гендердің mRNA miR-1273 жиынтығының miRNA байланысуы
Ключевые слова:
miRNA, ген, апоптоз, клеточный цикл, рак, жасушалық цикл, обырАннотация
Показано, что гены, участвующие в регуляции клеточного цикла и апоптоза, являются мишенями для семей-ства miR-1273. Гены ATM, TP53 и VHL регулируют как клеточный цикл, так и апоптоз. Их mRNA имеют сайты связывания с miRNA семейства miR-1273. Гены CLSPN, MDM2, NF2, TRIM13 и LZTS1 участвуют в регуляции клеточного цикла и их mRNA тоже являются мишенями для большинства изученных miRNA. Гены SPN, CASP, STK4 и DFFB участвуют в регуляции апоптоза и служат мишенями для семейства miRNA-1273. Изученные miRNA при соответствующих концентрациях могут сильно влиять на экспрессию генов, участвующих в регуляции клеточного цикла и апоптоза. Жасушалық цикл мен апоптозды реттейтін гендердің 1273 жиынтығының miRNA үшін нысана болатыны көрсетілген. ATM, TP53 және VHL гендер жасушалық цикл мен апоптозды да реттейді және олардың mRNA 1273 жиынтығының miRNA-мен байланысатын сайттары бар. CLSPN, MDM2, NF2, TRIM13 және LZTS1 жасушалық циклді реттеуге қатысады және олардың да mRNA зерттелген miRNA үшін нысана болып келеді. SPN, CASP, STK4 және DFFB гендер апоптозға қатысады және 1273 жиынтығының miRNA нысанасы болып келеді. Зерттелген miRNA белгілі концентрацияда жасушалық цикл мен апоптозға қатысатын гендердің экспрессиясына күшті әсер етеді.Библиографические ссылки
1 Lowe1 S.W., Lin A.W. Apoptosis in cancer // Carcinogenesis. – 2000. – Vol.21. – P. 485–495.
2 Luo Q., Li X., Li J., Kong X., Zhang J., Chen L., et al., MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer // Int J Oncol. – 2013. – Vol. 43. – P. 1212–1218.
3 Li X., Chen Y.T., Josson S., Mukhopadhyay N.K., Kim J., Freeman M.R., et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells // PLoS One. – 2013. – Vol. 8. – P.e70987.
4 Qian N.S., Liu W.H., Lv W.P., Xiang X., Su M., Raut V., et al., Upregulated MicroRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPß // PLoS One. – 2013. – Vol. 8. – P. e68004.
5 Cheng Q., Yi B., Wang A., Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis // Onco Targets Ther. – 2013. – Vol. 6. – P. 1675-1684.
6 Wang H., Zhu Y. et al. MiRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targetingintegrin β1 and matrix metalloproteinase2 (MMP2) // PLoS One. – 2013. – Vol.8. – e70192.
7 Zhong S., Li W., Chen Z., et al. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells // Gene. – 2013.– S0378-1119(13)01122-0.
8 Cheng Q., Yi B., Wang A., Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis // Onco Targets Ther. – 2013. – Vol. 6. – P. 1675-84.
9 Берилло О.А., Иващенко А.Т., Пыркова А.Ю. и др. Особенности сайтов связывания miRNA семейства miR-1273 с mRNA генов человека // Вестник КазНУ серия биологическая. – 2013. – 3/1(59). – С. 251-256.
10 Nag S., Zhang X., Srivenugopal K.S., et al. Targeting MDM2-p53 Interaction for Cancer Therapy: Are We There Yet? // Curr Med Chem. – 2014. – Vol. 21. – 553-574.
11 Erkko H., Pylkäs K., Karppinen S.M., Winqvist R. Germline alterations in the CLSPN gene in breast cancer families // Cancer Lett. – 2008. – Vol. 261. – P. 93-97.
12 Hamaratoglu F., Willecke M., Kango-Singh M., et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis // Nat Cell Biol. – 2006. – Vol. 8. – P. 27-36.
13 Hatakeyama S. TRIM proteins and cancer // Nat Rev Cancer. – 2011. – Vol. 11. – P. 792-804.
14 Califano D., Pignata S., Pisano C., et al. FEZ1/LZTS1 protein expression in ovarian cancer // J Cell Physiol. – 2010. – Vol. 222. – P. 382-386.
15 Menkiszak J., Chudecka-Głaz A., Gronwald J., et al. Characteristics of selected clinical features in BRCA1 mutation carriers affected with breast cancer undergoing preventive female genital tract surgeries // Ginekol Pol. – 2013. – Vol. 84. – P. 758-764.
16 Maus M.K., Grimminger P.P., Mack P.C., et al. KRAS mutations in non-small-cell lung cancer and colorectal cancer: Implications for EGFR-targeted therapies // Lung Cancer. – 2013. – S0169-5002(13)00521-7.
17 Fu Q., Cash S.E., Andersen J.J., et al. CD43 in the nucleus and cytoplasm of lung cancer is a potential therapeutic target // Int J Cancer. – 2013. – Vol. 132. – P. 1761-1770.
18 Iglesias-Guimarais V., Gil-Guiñon E., Sánchez-Osuna M., et al. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3’-OH single-strand DNA breaks // J Biol Chem. – 2013. – Vol. 288. – P. 9200-9215.
19 Xu C, Liu C, Huang W, et al. Effect of Mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro // Acta Biochim Biophys Sin (Shanghai). – 2013. – Vol. 45. – P. 268-279.
20 Khalil H.S., Tummala H., Chakarov S., et al. Targeting ATM pathway for therapeutic intervention in cancer // Biodiscovery. – 2012. – Vol. 1. – P. 3.
21 Zhou Q., Pardo A., Königshoff M., et al. Role of von Hippel-Lindau protein in fibroblast proliferation and fibrosis // FASEB J. – 2011. – Vol. 25. – P. 3032-3044.
22 Jiang P., Du W., Yang X. p53 and regulation of tumor metabolism // J Carcinog. – 2013. – Vol. 12. – P. 21.
23 Hsia TC, Tsai CW, Liang SJ, et al. Effects of ataxia telangiectasia mutated (ATM) genotypes and smoking habits on lung cancer risk in Taiwan // Anticancer Res. – 2013. – Vol. 33. – P. 4067-4071.
24 Hai Jiang H., Reinhardt C., Bartkova J., et al. The combined status of ATM and p53 link tumor development with therapeutic response // Genes & Dev. – 2009. – Vol. 23. – P. 1895-1909.
25 Zhou Q., Chen T., Ibe JC., et al. Knockdown of von Hippel-Lindau protein decreases lung cancer cell proliferation and colonization // FEBS Lett. – 2012. – Vol.586. – P. 1510-1515.
26 Zia M.K., Rmali K.A., Watkins G., et al. The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells // Int J Mol Med. – 2007. – Vol.20. – P. 605-611.
2 Luo Q., Li X., Li J., Kong X., Zhang J., Chen L., et al., MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer // Int J Oncol. – 2013. – Vol. 43. – P. 1212–1218.
3 Li X., Chen Y.T., Josson S., Mukhopadhyay N.K., Kim J., Freeman M.R., et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells // PLoS One. – 2013. – Vol. 8. – P.e70987.
4 Qian N.S., Liu W.H., Lv W.P., Xiang X., Su M., Raut V., et al., Upregulated MicroRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPß // PLoS One. – 2013. – Vol. 8. – P. e68004.
5 Cheng Q., Yi B., Wang A., Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis // Onco Targets Ther. – 2013. – Vol. 6. – P. 1675-1684.
6 Wang H., Zhu Y. et al. MiRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targetingintegrin β1 and matrix metalloproteinase2 (MMP2) // PLoS One. – 2013. – Vol.8. – e70192.
7 Zhong S., Li W., Chen Z., et al. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells // Gene. – 2013.– S0378-1119(13)01122-0.
8 Cheng Q., Yi B., Wang A., Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis // Onco Targets Ther. – 2013. – Vol. 6. – P. 1675-84.
9 Берилло О.А., Иващенко А.Т., Пыркова А.Ю. и др. Особенности сайтов связывания miRNA семейства miR-1273 с mRNA генов человека // Вестник КазНУ серия биологическая. – 2013. – 3/1(59). – С. 251-256.
10 Nag S., Zhang X., Srivenugopal K.S., et al. Targeting MDM2-p53 Interaction for Cancer Therapy: Are We There Yet? // Curr Med Chem. – 2014. – Vol. 21. – 553-574.
11 Erkko H., Pylkäs K., Karppinen S.M., Winqvist R. Germline alterations in the CLSPN gene in breast cancer families // Cancer Lett. – 2008. – Vol. 261. – P. 93-97.
12 Hamaratoglu F., Willecke M., Kango-Singh M., et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis // Nat Cell Biol. – 2006. – Vol. 8. – P. 27-36.
13 Hatakeyama S. TRIM proteins and cancer // Nat Rev Cancer. – 2011. – Vol. 11. – P. 792-804.
14 Califano D., Pignata S., Pisano C., et al. FEZ1/LZTS1 protein expression in ovarian cancer // J Cell Physiol. – 2010. – Vol. 222. – P. 382-386.
15 Menkiszak J., Chudecka-Głaz A., Gronwald J., et al. Characteristics of selected clinical features in BRCA1 mutation carriers affected with breast cancer undergoing preventive female genital tract surgeries // Ginekol Pol. – 2013. – Vol. 84. – P. 758-764.
16 Maus M.K., Grimminger P.P., Mack P.C., et al. KRAS mutations in non-small-cell lung cancer and colorectal cancer: Implications for EGFR-targeted therapies // Lung Cancer. – 2013. – S0169-5002(13)00521-7.
17 Fu Q., Cash S.E., Andersen J.J., et al. CD43 in the nucleus and cytoplasm of lung cancer is a potential therapeutic target // Int J Cancer. – 2013. – Vol. 132. – P. 1761-1770.
18 Iglesias-Guimarais V., Gil-Guiñon E., Sánchez-Osuna M., et al. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3’-OH single-strand DNA breaks // J Biol Chem. – 2013. – Vol. 288. – P. 9200-9215.
19 Xu C, Liu C, Huang W, et al. Effect of Mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro // Acta Biochim Biophys Sin (Shanghai). – 2013. – Vol. 45. – P. 268-279.
20 Khalil H.S., Tummala H., Chakarov S., et al. Targeting ATM pathway for therapeutic intervention in cancer // Biodiscovery. – 2012. – Vol. 1. – P. 3.
21 Zhou Q., Pardo A., Königshoff M., et al. Role of von Hippel-Lindau protein in fibroblast proliferation and fibrosis // FASEB J. – 2011. – Vol. 25. – P. 3032-3044.
22 Jiang P., Du W., Yang X. p53 and regulation of tumor metabolism // J Carcinog. – 2013. – Vol. 12. – P. 21.
23 Hsia TC, Tsai CW, Liang SJ, et al. Effects of ataxia telangiectasia mutated (ATM) genotypes and smoking habits on lung cancer risk in Taiwan // Anticancer Res. – 2013. – Vol. 33. – P. 4067-4071.
24 Hai Jiang H., Reinhardt C., Bartkova J., et al. The combined status of ATM and p53 link tumor development with therapeutic response // Genes & Dev. – 2009. – Vol. 23. – P. 1895-1909.
25 Zhou Q., Chen T., Ibe JC., et al. Knockdown of von Hippel-Lindau protein decreases lung cancer cell proliferation and colonization // FEBS Lett. – 2012. – Vol.586. – P. 1510-1515.
26 Zia M.K., Rmali K.A., Watkins G., et al. The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells // Int J Mol Med. – 2007. – Vol.20. – P. 605-611.
Загрузки
Как цитировать
Ivashchenko, A. T., Atambayeva, S. A., & Niyazova, R. E. (2015). Взаимодействие miRNA семейства miR-1273 с mRNA генов, регулирующих клеточный цикл и апоптоз. Жасушалық цикл мен апоптозды реттейтін гендердің mRNA miR-1273 жиынтығының miRNA байланысуы. Вестник КазНУ. Серия биологическая, 60(1), 13–17. извлечено от https://bb.kaznu.kz/index.php/biology/article/view/46
Выпуск
Раздел
Биоинформатика, геномика и протеомика. Физико-химическая биология