Бидай, арпа және сұлы дәндері мен өскіндеріндегі қорғаныш ақуыздарының белсенділігі мен компоненттік құрамы

Авторлар

  • В.А. Кузовлев М.Ә. Айтқожин атындағы молекулалық биология және биохимия институты ҚР БҒМ ҒК, Қазақстан, Алматы
  • A.O. Абайлдаев М.Ә. Айтқожин атындағы молекулалық биология және биохимия институты ҚР БҒМ ҒК, Қазақстан, Алматы
  • А.А. Хакімжанов РГП на ПХВ "ИМББ им. М.А. Айтхожина" КН МОН РК

DOI:

https://doi.org/10.26577/eb.2022.v92.i3.09
        46 41

Кілттік сөздер:

бидай, арпа, сұлы, β-1,3-глюканаза, хитиназа, пероксидаза, протеаза ингибиторлары

Аннотация

Жұмыстың мақсаты бидай, арпа және сұлы дәндері мен өскіндеріндегі β-1,3-глюканазаның, хитиназаның, пероксидазаның және протеаза ингибиторлары белсенділігінің деңгейі мен құрамын салыстырмалы зерттеу болды. Бұл ақуыздар маңызды физиологиялық рөл атқарады, сондай-ақ өсімдіктерді қоздырғыштардан қорғауға қатысады. Өсіру, ақуыздарды оқшаулау және талдау бойынша тәжірибелер бірдей жағдайларда жүргізілді, бұл зерттелген дәнді дақылдардың қорғаныш әлеуетін объективті бағалауға ықпал етті. Арпа дәндері мен өскіндері β-1,3-глюканазаның ИЭФ бойынша ең жоғары белсенділік пен гетерогенділік дәрежесімен, ал сұлы ақуызының салыстырмалы түрде төмен деңгейімен сипатталды. Сұлы дәндері мен өскіндері хитиназаның жоғары белсенділігіне ие болды. ПO белсенділігі мен изоферменттік құрамы үш дәнді дақылда, қалыпты жатқан дәндерде де, өскіннің мүшелерінде де қатты өзгерді. Протеаз ингибиторларының ең көп мөлшері бидай дәндерінде, ал ең азы сұлыда болды. Конститутивтік қалыпты күйдегі ақуыздар мен ингибиторлардың зерттелген қасиеттері олардың өзгергіштігін, стресс жағдайында және қоздырғыштар тудыратын жаңа изоформаларды индукциялауда пайдалы болуы мүмкін. Бұл деректерді астықтың кейбір сапалық сипаттамаларын бағалау үшін де пайдалануға болады.

Библиографиялық сілтемелер

Leubner-Metzger G. Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening // Seed Sci. Res. – 2003. – Vol. 13. – P. 17-34.

Finnie C., Bak-Jensen K., Laugesen S., Roepstorff P., Svensson B. Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome // Plant Sci. – 2006. – Vol. 170. – P. 808-821.

Gupta P., Ravi I., Sharma V. Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola // J. Plant Interact. – 2013. – Vol. 8. - P. 155-161.

Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi // Biotechnol. Letters. – 2012. – Vol. 34, No 11. – P. 1983-1990.

Gorganovich S. Biological and technological function of barley seed pathogenesis-related proteins (PRs) // J. Inst. Brewing. – 2009. – Vol. 115, No 4. – P. 334-360.

Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mira Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawat S., Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance // Microbiol. Res. – 2018. – Vol. 212-213. – P. 29-37.

Mishra A.K., Sharma K., Misra R.S. Elicitor recognition, signal transduction and induced resistance in plants // J. Plant Interact. – 2012. – Vol. 7, No 2. – P. 95-120.

Van Loon L.C., Rep M., Pieterse C.M.J. Significance of inducible defence-related proteins in infected plants // Ann. Rev. Phytopathol. – 2006. – Vol. 44. – P. 135-162.

Sharma V. Pathogenesis related defense function of plant chitinases and β-(1,3)-glucanases // Vegetos. – 2013. – Vol. 26. – P. 205-218

Jamar C., Jardin P., Fauconnier M.L. Cell wall polysaccharide hydrolysis of malting barley (Hordeum vulgare L.) // Biotechnol., Agronomy, Soc. Environ. – 2011. – Vol. 15, No 2. – P. 301-313.

Sharma N., Sharma K.P., Gaur R.K., Gupta V.K. Role of chitinase in plant defense // Asian J. Biochem. – 2011. – Vol. 6, No 1. – P. 29-37.

Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. Chitinases - potential candidates for enhanced plant resistance towards fungal pathogens // Agriculture. – 2018. – Vol. 8, No 88. - P. 1-12.

Kasprzewska A. Plant chitinases - regulation and function // Cell. Mol. Biol. Letters. – 2003. – Vol. 8, No 3. – P. 809-824.

Ohnuma T., Numata T., Osawa T., Inanaga H., Okazaki Y., Shinya S., Kondo K., Fukuda T., Fukamizo T. Crystal structure and chitin oligosaccharide-binding mode of a ‘loopful’ family GH19 chitinase from rye, Secale cereale, seeds // FEBS J. – 2012. – Vol. 279. – P. 3639-3651.

Stoykov Y.M., Pavlov A.I., Krastanov A.I. Chitinase biotechnology: production, purification, and application // Engineer. Life Sci. – 2015. – Vol. 15. – P. 30-38.

Taira, T. Structures and antifungal activity of plant chitinases // J. Appl. Glycosci. – 2010 – Vol. 57. – P. 167-176.

Oyeleye A., Normi Y. Chitinase: diversity, limitations, and trends in engineering for suitable applications // Biosci. Reports. – 2018. – Vol. 38. – P. 1-21.

Grover A. Plant chitinases: genetic diversity and physiological roles // Critical Rev. Plant Sci. – 2012. – Vol. 31. P. 57-73.

Tanaka J., Fukamizo T., Ohnuma T. Eymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding // Glycobiology. – 2017. – Vol. 27, No 5. – P. 477-485.

Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. A large family of class III plant peroxidase // Plant Cell Physiol. – 2001 – Vol. 42, No 5. – P. 462-468.

Maksimov I.V., Cherepanova E.A., Burkhanova G.F., Sorokan A.V., Kuzmina O.I. Structural-functional features of plant isoperoxidases // Biochemistry (Moscow). – 2011. – Vol. 76, No 6. – P. 609-621.

Kukavica B.M., Jovanovic S.D., Menckhoff L., Lüthje S. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth // J. Exp. Bot. – 2012. – Vol. 63, No 12. – P. 4631-4645.

Almagro L., Goґmez Ros L.V., Belchi-Navarro S., Bru R., Ros Barcelo A., Pedreno M.A. Class III peroxidases in plant defence reactions // J. Exp. Bot. – 2008. – Vol. 10. – P. 1-14.

Moural T.W., Lewis K.M., Barnaba C., Zhu F., Palmer N.A., Sarath G., Scully E.D., Jones J.P., Scott E., Sattler S.E., Kang C.H. Characterization of class III peroxidases from Switchgrass // Plant Physiol. – 2017. – Vol. 173. – P. 417-433.

Mosolov V.V., Valueva T.A. Proteinase inhibitors and their function in plants: a review // Appl. Biochem. Microbiol. – 2005. – Vol. 41, No 3. – P. 227-246.

Jashni M.K., Mehrabi R., Collemare J., Mesarich C.H., de Wit P.J. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions // Front. Plant Sci. – 2015. – Vol. 6. – P. 584-591.

Eggert K., Rawel H.M., Pawelzik E. In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases // Eur. Food Res. Technol. – 2011. – Vol. 233, No 4. – P.697-705.

Valueva T.A., Kudryavtseva N.N., Sof’in A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V. Comparative analyses of exoproteinases produced by three phytopathogenic microorganisms // J. Pathogens. – 2011. – Vol. 2011. – P. 1-9.

Chandrasekaran M., Thangavelu B., Chun S.C., Sathiyabama M. Proteases from phytopathogenic fungi and their importance in phytopathogenicity // J. Gen. Plant Pathol. – 2016. – Vol. 82, No 5. – P. 233–239.

Pekkarinen A.I., Longstaff C., Jones B.L. Kinetics of the Inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors // J. Agric. Food Chem. – 2007. – Vol. 55, No 7. – P. 2736-2742.

Clemente M., Corigliano M.G., Pariani S.A., Sánchez-López E.F., Sander V.A., Ramos-Duarte V.A. Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming // Int. J. Mol. Sci. – 2019. – Vol. 20. – P. 1345-1366.

Fink W., Liefland M., Mendgen K. Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.) // Plant Physiol. – 1988. – Vol. 88. – P. 270-275.

Fornera S., Walde P. Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine // Analyt. Biochem. – 2010. – Vol. 407. – P. 293-295.

Pan S.Q., Ye X.S., Kúc J. Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels // Analyt. Biochem. – 1989. – Vol. 182. – P. 136-140.

Trudel, J., Asselin, A. Detection of chitinase activity after polyacrylamide gel electrophoresis // Analyt. Biochem. – 1989. – Vol. 178. – P. 362-366.

Magro P. Onion neck rot: isoperoxidase patterns in infected scales and the effect of Botrytis allii polygalacturonase on host peroxidase and phenolic compounds // Rivista Patologia vegetale. – 1984. – Vol. 20, No 3. – P. 124-132.

Havrlentová M., Petruláková Z., Burgárová A., Gago F., Hlinková A., Šturdík E. Cereal β-glucans and their significance for the preparation of functional foods // Czech J. Food Sci. – 2011. – Vol. 29, No 1. – P. 1-14.

Maksimov I.V., Valeev A.S., Cherepanova E.A., Burkhanova G.F. Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen_inducible anionic peroxidase // Applied Biochem. Microbiol. – 2014. – Vol. 50, No 1. – P. 82-87.

Takashima Y., Suzuki M., Ishiguri F., Iizuka K., Yoshizawa N., Yokota S. Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No.8 against canker-rot fungus Inonotus obliquus strain IO-U1 // Plant Biotechol. – 2013. – Vol. 30. – P. 1-7.

Moravčíková J., Margetínyová D., Gálová Z., Žur I., Gregorová Z., Zimová M., Boszorádová E., Matušíková I. Beta-1,3-glucanase activities in wheat and relative species // Nova Biotechnologica et Chimica. – 2016. – Vol. 15, No 2. – P. 122-132.

Moravčíková Y., Ujvariová N., Zur I, Gálová Z., Gregorová Z, Zimová M, Boszorádová E., Matušíková I., Сhitinase activities in wheat and its relative species // Agriculture Poľnohospodárstvo. – 2017. – Vol. 63, No 1. – P. 14-22.

Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mira Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawa S., Grover A. (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res., vol. 212-213, pp. 29-37.

Almagro L., Goґmez Ros L.V., Belchi-Navarro S., Bru R., Ros Barcelo A., Pedreno M.A. (2008) Class III peroxidases in plant defense reactions. J. Exp. Bot., vol. 10, pp. 1-14.

Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. (2012) Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol. Letters, vol. 34, no.11, pp. 1983-1990.

Chandrasekaran M., Thangavelu B., Chun S.C., Sathiyabama M. (2016) Proteases from phytopathogenic fungi and their importance in phytopathogenicity. J. Gen. Plant Pathol., vol. 82, no. 5, pp. 233–239.

Clemente M., Corigliano M.G., Pariani S.A., Sánchez-López E.F., Sander V.A., Ramos-Duarte V.A. (2019) Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int. J. Molecular Sci., vol. 20, pp. 1345-1366.

Eggert K., Rawel H.M., Pawelzik E. (2011) In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases. Eur. Food Res. Technol., vol. 233, no. 4, pp.697-705.

Fink W., Liefland M., Mendgen K. (1988) Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.). Plant Physiol., vol. 88, pp. 270-275.

Finnie C., Bak-Jensen K., Laugesen S., Roepstorff P., Svensson B. (2006) Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci., vol. 170, pp. 808-821.

Fornera S., Walde P. (2010) Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine. Analyt. Biochem., vol. 407, pp. 293-295.

Gorganovich S (2009) Biological and technological function of barley seed pathogenesis-related proteins (PRs). J. Inst. Brewing, vol. 115, no. 4, pp. 334-360.

Grover A. (2012) Plant chitinases: genetic diversity and physiological roles. Critical Rev. Plant Sci.,.vol. 31, pp. 57-73.

Gupta P., Ravi I., Sharma V. (2013) Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J. Plant Interact., vol. 8, pp. 155-161.

Havrlentová M., Petruláková Z., Burgárová A., Gago F., Hlinková A., Šturdík E. (2011) Cereal β-glucans and their significance for the preparation of functional foods. Czech J. Food Sci., vol. 29, no. 1, pp. 1-14.

Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. (2001) A large family of class III plant peroxidase. Plant Cell Physiol. vol. 42, no 5, pp. 462-468.

Jashni M.K., Mehrabi R., Collemare J., Mesarich C.H., de Wit P.J. (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front. Plant Sci, vol. 6, pp. 584-591.

Jamar C., Jardin P., Fauconnier M.L. (2011) Cell wall polysaccharide hydrolysis of malting barley (Hordeum vulgare L.).Biotechnol., Agronomy, Soc. Environ., vol. 15, no. 2, pp. 301-313.

Kasprzewska A. (2003) Plant chitinases - regulation and function. Cellular Molecular Biology Letters, vol. 8, no. 3, pp. 809-824.

Kukavica B.M., Jovanovic S.D., Menckhoff L., Lüthje S. (2012) Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. J. Exp. Bot., vol. 63, no.12, pp. 4631-4645.

Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. (2018) Chitinases - potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture, vol. 8, no. 88, pp. 1-12.

Leubner-Metzger G. (2003) Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Sci. Res., vol. 13, pp. 17-34.

Magro P. (1984) Onion neck rot: isoperoxidase patterns in infected scales and the effect of Botrytis allii polygalacturonase on host peroxidase and phenolic compounds. Rivista Patologia vegetale, vol. 20, no. 3, pp. 124-132.

Maksimov I.V., Cherepanova E.A., Burkhanova G.F., Sorokan A.V., Kuzmina O.I. (2011) Structural-functional features of plant isoperoxidases. Biochemistry (Moscow), vol. 76, no. 6, pp. 609-621.

Maksimov I.V., Valeev A.S., Cherepanova E.A., Burkhanova G.F. (2014) Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen_inducible anionic peroxidase. Appl. Biochem. Microbiol., vol. 50, no. 1, pp. 82-87.

Mishra A.K., Sharma K., Misra R.S. (2012) Elicitor recognition, signal transduction and induced resistance in plants. J. Plant Interact., vol. 7, no. 2, pp. 95-120.

Moravčíková J,, Margetínyová D,, Gálová Z,, Žur I,, Gregorová Z,, Zimová M,, Boszorádová E,, Matušíková I, (2016) Beta-1,3-glucanase activities in wheat and relative species. Nova Biotechnologica et Chimica, vol. 15, no.2, pp. 122-132.

Moravčíková Y., Ujvariová N., Zur I., Gálová Z., Gregorová Z., Zimová M., Boszorádová E., Matušíková I. (2017) Сhitinase activities in wheat and its relative species, Agriculture Poľnohospodárstvo, vol. 63, no. 1, pp. 14-22.

Mosolov V.V., Valueva T.A. (2005) Proteinase inhibitors and their function in plants: a review. Appl. Biochem. Microbiol., vol. 41, no. 3, pp. 227-246.

Moural T.W., Lewis K.M., Barnaba C., Zhu F., Palmer N.A., Sarath G., Scully E.D., Jones J.P., Scott E., Sattler S.E., Kang C.H. (2017) Characterization of class III peroxidases from Switchgrass. Plant Physiol., vol. 173, pp. 417-433.

Ohnuma T., Numata T., Osawa T., Inanaga H., Okazaki Y., Shinya S., Kondo K., Fukuda T., Fukamizo T. (2012) Crystal structure and chitin oligosaccharide-binding mode of a ‘loopful’ family GH19 chitinase from rye, Secale cereale, seeds. FEBS J., vol. 279, pp. 3639-3651.

Oyeleye A., Normi Y. (2018) Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci. Reports, vol. 38, pp. 1-21.

Pan S.Q., Ye X.S., Kúc J (1988) Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Analyt. Biochem., vol. 182, pp. 136-140.

Pekkarinen A.I., Longstaff C., Jones B.L. (2007) Kinetics of the Inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. J. Agric. Food Chem., vol. 55, 7, pp. 2736-2742.

Sharma N., Sharma K.P., Gaur R.K., Gupta V.K. (2011) Role of chitinase in plant defense. Asian J. Biochem., vol. 6, 1, pp. 29-37.

Sharma V. (2013) Pathogenesis related defense function of plant chitinases and β-(1,3)-glucanases. Vegetos, vol. 26, pp. 205-218.

Stoykov Y.M., Pavlov A.I., Krastanov A.I. (2015) Chitinase biotechnology: production, purification, and application. Engineer. Life Sci., vol. 15, pp. 30-38.

Taira T. (2010) Structures and antifungal activity of plant chitinases. J. Applied Glycoscience, vol. 57, pp. 167-176.

Takashima Y,, Suzuki M,, Ishiguri F,, Iizuka K,, Yoshizawa N,, Yokota S, (2013) Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No.8 against canker-rot fungus Inonotus obliquus strain IO-U1. Plant Biotechol., vol. 30, pp. 1-7.

Tanaka J., Fukamizo T., Ohnuma T. (2017) Eymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding. Glycobiology, vol. 27, no. 5, pp. 477-485.

Trudel J., Asselin A. (1989). Detection of chitinase activity after polyacrylamide gel electrophoresis. Analyt. Biochem., vol. 178, pp. 362-366.

Valueva T.A., Kudryavtseva N.N., Sof’in A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V. (2011) Comparative analyses of exoproteinases produced by three phytopathogenic microorganisms. J. Pathogens, vol. 2011, pp. 1-9.

Van Loon L.C., Rep M., Pieterse C.M.J. (2006) Significance of inducible defence-related proteins in infected plants. Ann. Rev. Phytopathol., vol. 44, pp. 135-162.

Жүктелулер

Жарияланды

2022-09-30

Как цитировать

Кузовлев , В. ., Абайлдаев A. ., & Хакімжанов, А. . (2022). Бидай, арпа және сұлы дәндері мен өскіндеріндегі қорғаныш ақуыздарының белсенділігі мен компоненттік құрамы. ҚазҰУ Хабаршысы. Биология сериясы, 92(3), 109–120. https://doi.org/10.26577/eb.2022.v92.i3.09

Шығарылым

Бөлім

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА