Elaboration of technology for obtaining of genetically modified canola plants
Keywords:
Brassica napus, canola, regeneration, transformation, AtDREB1AAbstract
The task of this work is optimization of the conditions for regeneration of different tissue and obtaining of transgenic rape plants (Brassica napus L.) after transformation by Agrobacterium tumerfaciens using of transcription factor AtDREB1A gene.The method of rape regeneration has developed using hypocotyls and cotyledons obtained from germinated seeds. By virtue of this development the conditions were selected for stable genetic transformation of cotyledons and hypocotyls by Agrobacterium strains. As results transgenic rape plants with the recombinant DNA sequences have obtained.References
1 Кучук Н.В. Генетическая трансформация высших растений, опосредованная бактериями из рода
Agrobacterium // Успехи современной биологии. 1997. - Т. 117. - Вып. 6. - С. 645 – 659.
2 Курочкина С.Д., Картель Н.А. Генетическая трансформация растений, процессы рекомбинации и регуляции
экспрессии генов у трансгенных растений // Молекулярная генетика, микробиология и вирусология. 1998. - Т. 4.
- С. 3 -12.
3 Hansen G., Wright M.S. Recent advances in the transformation of plants // Trends in plant science. 1999. - V. 4 (6).
- P 226 – 231.
4 Hammond J., McGarvey P., Yusibov V. Biotechnology: new products and applications //Berlin: Springer Verlag. -2000. - P. 196.
5 Maheshwari P, Selvaraj G, Kovalchuk I. Optimization of Brassica napus (canola) explant regeneration for genetic
transformation//N Biotechnol. - 2011 Dec . - № 29. - Р. 144-55.
6 СправочникPromega. Protocols and Application Guide. Promegacorp. 1996.
7 Cardoza V., Steward C. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola
(Brassica napus L.) from hypocotyls segment explants // Plant Cell Rep. – 2003. – Vol. 21. – P. 599-604. 43.
8 Kong F., Li J., Tan X.et all A new time-saving transformation system for Brassica napus // African Journal of
Biotechnology. – 2009. – Vol. 8 (11). – P. 2497-2502.
Agrobacterium // Успехи современной биологии. 1997. - Т. 117. - Вып. 6. - С. 645 – 659.
2 Курочкина С.Д., Картель Н.А. Генетическая трансформация растений, процессы рекомбинации и регуляции
экспрессии генов у трансгенных растений // Молекулярная генетика, микробиология и вирусология. 1998. - Т. 4.
- С. 3 -12.
3 Hansen G., Wright M.S. Recent advances in the transformation of plants // Trends in plant science. 1999. - V. 4 (6).
- P 226 – 231.
4 Hammond J., McGarvey P., Yusibov V. Biotechnology: new products and applications //Berlin: Springer Verlag. -2000. - P. 196.
5 Maheshwari P, Selvaraj G, Kovalchuk I. Optimization of Brassica napus (canola) explant regeneration for genetic
transformation//N Biotechnol. - 2011 Dec . - № 29. - Р. 144-55.
6 СправочникPromega. Protocols and Application Guide. Promegacorp. 1996.
7 Cardoza V., Steward C. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola
(Brassica napus L.) from hypocotyls segment explants // Plant Cell Rep. – 2003. – Vol. 21. – P. 599-604. 43.
8 Kong F., Li J., Tan X.et all A new time-saving transformation system for Brassica napus // African Journal of
Biotechnology. – 2009. – Vol. 8 (11). – P. 2497-2502.
Downloads
How to Cite
Nargilova, R. M., Karpova, O. V., Pissarenko, A. M., & Iskakov, B. K. (2015). Elaboration of technology for obtaining of genetically modified canola plants. Experimental Biology, 59(3/1), 149–152. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/673
Issue
Section
Biotechnology: from research to innovations