Cloning of the Arabidopsis thaliana poly (Adp-ribose) polymerase 2 cdna gene in Saccharomyces cerevisiae
DOI:
https://doi.org/10.26577/eb.2020.v84.i3.08Abstract
Poly(ADP-ribose)polymerase (PARP) catalyzes the synthesis of covalently attached ADP-ribose polymers to acceptor proteins. The donor of the residues of ADP-ribose is NAD+. The prominent roles of PARP is a DNA damage sensor. PARP1, in poly(ADP-ribosyl)ated form binds to DNA breaks and engages proteins of DNA repair to this sites. Recently, it has been shown that PARP poly(ADP-ribosyl)ates both proteins and DNA breaks. However, there is no direct evidence of poly(ADP-ribosyl)ated DNA adducts in vivo in animals and plants.
PARP activity is absent in Saccharomyces cerevisiae cells, despite the fact that it has been identified in organisms ranging from archaebacteria to mammals. Due to the simplicity of manipulation and genetic interpretation S. cerevisiae yeasts have been used to analyze the functions of proteins from animal and plant cells. Therein, the goal of our work is the cloning and heterologous expression of the AtPARP2 gene from the Arabidopsis thaliana in yeasts.
By using genetic engineering methods, we have constructed a recombinant plasmid with cDNA of the AtPARP2 gene under the control of the inducible promoter GAL10 from episomal vector pESC-LEU2. A recombinant S.cerevisiae strain capable for expressing the cDNA of the AtPARP2 gene was obtained by genetic transformation method. By using Western blotting with the applying of polyclonal anti-AtPARP2 antibodies, it was revealed that the product of gene expression in yeast is a globular protein weighing 72kDa, consisting 637 amino acids (pI 5.92). A slight inhibition of growth was shown in FF 18733 yeast cells which express AtPARP2. Induction of AtPARP2 expression in yeast revealed PARylating activity of protein in vivo. Auto-poly(ADP-ribosyl)ation activity of AtPARP2 was shown in yeasts in response to double-stranded DNA breaks induced by bleomycin treatment of cells. 3-AB, inhibitor of PARP suppressed the amount of poly(ADP-ribosyl)ated protein products.
Key words: Poly(ADP-ribose)polymerase, AtPARP2, poly(ADP-ribosyl)ation, Arabidopsis thaliana, Saccharomyces cerevisae.
References
2 Ame´ J-C., Spenlehauer C., de Murcia G. The PARP superfamily // BioEssays. – 2004. – Vol. 26. – P. 882-893.
3 Schreiber V., Dantzer F., Ame J-C., de Murcia G. Poly(ADP -ribose): novel functions for an old molecule // Nat. Rev. Mol. Cell. Biol. – 2006. – Vol. 7. – P. 517-528.
4 Woodhouse B.C., Dianov G.L. Poly ADP -ribose polymerase-1: an international molecule of mystery // DNA Repair. – 2008. – Vol. 7. – P. 1077-1086.
5 Briggs A.G, Bent A.F. Poly(ADP -ribosyl)ation in plants // Trends Plant Sci. – 2011. – Vol. 16, № 7. – P. 372-80.
6 Lamb R.S., Citarelli M., Teotia S. Functions of the poly(ADP -ribose) polymerase superfamily in plants // Cell Mol. Life Sci. – 2012. – Vol. 69, № 2. – P.175-89.
7 Briggs A.G., Bent A.F. Poly(ADP -ribosyl)ation in plants // Trends in Plant Science. – 2011. – Vol. 16, № 7. – P. 360-1385.
8 Hinz J.M., Rodriguez Y., Smerdon M.J. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme // Proc. Natl. Acad. Sci. U.S.A. – 2010. – Vol. 107. – P. 4646-4651.
9 Odell I.D., Barbour J.E., Murphy D.L., Della-Maria J.A., Sweasy J.B., Tomkinson A.E., Wallace, S.S., Pederson, D.S. Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair // Mol. Cell. Biol. – 2011. – Vol. 31. – P. 4623-4632.
10 Bonicalzi M.E., Haince J.F., Droit A., Poirier G.G. Regulation of poly(ADP-ribose) metabolism by poly(endonuclease of bull seminal plasma induced by ADP-ribosylation -ribose) glycohydrolase: where and when? // Cell. Mol. Life Sci. – 2005. – Vol. 62. – P. 739-750.
11 Ono T., Kasamatsu A., Oka S., Moss J. The 39-kDa poly-(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP -ribose, a product of the Sir2 family of acetyl-histone deacetylases // Proc. Natl. Acad. Sci. U.S.A. – 2006. – Vol. 103. – P. 16687-16691.
12 Sharifi R., Morra R., Appel C.D., Tallis M. et al. Deficiency of terminal endonuclease of bull seminal plasma induced by ADP-ribosylation -ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease // EMBO J. – 2013. – Vol. 32. – P.1225-1237.
13 Koh D.W., Lawler A.M., Poitras M.F., Sasaki M., Wattler S., Nehls M.C., Stoger T., Poirier G.G., Dawson V.L., Dawson T.M. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality // Proc. Natl. Acad. Sci. U.S.A. – 2004. – Vol. 101. – P. 17699-17704.
14 Ame J.C., Fouquerel E., Gauthier L.R., Biard,D., Boussin F.D., Dantzer F., de Murcia G., Schreiber V. Radiation-induced mitotic catastrophe in PARG-deficient cells // J. Cell Sci. 2009. – Vol. 122. – P. 1990-2002.
15 Suter B., Auerbach D., Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond // Biotechniques. – 2006. – Vol. 40. – P. 625–644.
16 Hartwell L.H. Yeast and cancer // Biosci. Rep. – 2004. – Vol. 24. – P. 523–544.
17 Rissel D., Heym P.P., Peiter E.A. yeast growth assay to characterize plant poly(ADP-ribose) polymerase (PARP) proteins and inhibitors // Anal. Biochem. – 2017. – Vol. 15, №527. – P. 20-23.
18 Kuanbay A.K., Smekenov I.T., Saparbayev M.K., Ishchenko А.А., Taipakova S.M., Bissenbaev A.K. Isolation and characterization of Arabidopsis thaliana poly(ADP-ribose) polymerase 2 cDNA// Experimental Biology. -2018. -Vol. 74, №1. - P. 99-111.
19 Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. – 1970. – Vol. 227. - № 5259. – P. 680-685.
20 Kaiser P., Auer B., Schweiger M. Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NADþ ADP-ribosyltransferase requires the DNA-binding domain (“zinc fingers”) // Mol. Gen. Genet. – 1992. – Vol. 232. – P. 231e239.
21 Perrin D., Gras S., van Hille B., Hill B.T. Expression in yeast and purification of functional recombinant human poly(ADP-ribose)polymerase (PARP). Comparative pharmacological profile with that of the rat enzyme // J. Enzyme Inhib. – 2000. – Vol. 15. – P. 461e469.
22 Perkins E., Sun D., Nguyen A., Tulac S., Francesco M., Tavana H., Nguyen H., Tugendreich S., Barthmaier P., Couto J., Yeh E., Thode S., Jarnagin K., Jain A., Morgans D., Melese T. Novel inhibitors of poly(ADP-ribose) polymerase PARP1 and PARP2 identified using a cell-based screen in yeast // Cancer Res. – 2001. – Vol. 61. – P. 4175e4183.
23 Tao Z., Gao P., Liu H.W. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening // Biochemistry. – 2009. – Vol. 48. – P. 11745e11754.
24 La Ferla M., Mercatanti A., Rocchi G., Lodovichi S., Cervelli T., Pignata L., Caligo M.A., Galli A. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: effect on survival, homologous recombination and identification of genes involved in intracellular localization // Mut. Res. - Fundam. Mol. Mechan. Mutagen. – 2015. – Vol. 774. – P. 14e24.
25 Rissel D., Heym P.P., Thor K., Brandt W., Wessjohann L.A., Peiter E. No silver bullet - canonical poly(ADP-ribose) polymerases (PARPs) are no universal factors of abiotic and biotic stress resistance of Arabidopsis thaliana // Front. Plant Sci. 2007. – Vol. 8. – P. 59.
26 Gottipati P., Vischioni B., Schultz N., Solomons J., Bryant H.E., Djureinovic T., Issaeva N., Sleeth K., Sharma R.A., Helleday T. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells // Cancer Res. – 2010. – Vol. 70. – P. 5389–5398.
27 Weil M.K., Chen A.P. PARP inhibitor treatment in ovarian and breast cancer // Curr. Probl. Cancer. – 2011. – Vol. 35. – P. 7–50.
28 De Vos M., Schreiber V., Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art // Biochem. Pharmacol. – 2012. – Vol. 84. – P. 137–146.
29 Tao G.H., Yang L.Q., Gong C.M., Huang H.Y., Liu J.D., Liu J.J., Yuan J.H., Chen W., Zhuang Z.X. Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to benzo(a)pyrene // Mol. Biol. Rep. – 2009. – Vol. 36. – P. 2413–2422.
30 De Block M., Verduyn C., De Brouwer D., Cornelissen M. Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance // Plant J. - 2005. - Vol. 41. – P. 95–106.
31 Amy G. Briggs and Andrew F. Bent. Poly(ADP-ribosyl)ation in plants // Trends in Plant Science. - 2011. - Vol. 16, № 7. - P. 360-1385.
32 Abraham A.T., Lin J., Newton D.L., Rybak S., Hecht S. RNA cleavage and inhibition of protein synthesis by bleomycin // Chem. Biol. – 2003. – Vol. 10. – P. 45–52.
33 Povirk L.F., Han Y.H., Steighner R.J. Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5' extensions // Biochemistry. – 1989. – Vol. 28, № 14. – P. 5808-14.