Rice plants in cadmium polluted environment

Authors

  • S. D. Atabayeva Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • A. S. Nurmahanova Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • Sh. K. Kenzhebayeva Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • S. Sh. Asrandina Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • S. S. Kenzhebayeva Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • R. A. Alybayeva Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • M. Narmuratova Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • B. M. Tynybekov Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
        237 81

Keywords:

rice, cadmium, growth, stability, variety, biomass,

Abstract

The screening of different rice varieties to the   effect of  cadmium on growth parameters was done. As objects of the study were taken rice varieties - Chapsari, Barakat, Bakanas, Violetta, Anayt, Fisht, Marzhan, Madina. Plants were grown 7 days in solutions6 containing various concentrations  of cadmium (Cd SO4). Plants were grown in 5 variants: control, 50 µM, 100 µM, 200 µM, 400 µM CdSO4.  It was revealed that with increasing concentrations of cadmium the plants growth and accumulation of biomass are reduced. The biomass of the plant roots is  inhibited to a greater degree than the above-ground  organs. It was studied the action of cadmium on biomass accumulation of above-ground organs of rice. As a result of studies on the biomass accumulation by above-ground organs the rice varieties are located in the following way: Madina (75%) > Bakanas (62%) > Barakat (15%)> Chapsari (13%) > Violetta (10%)> Marzhan (3%) = Anayt (3%) > Fisht (2%). As the growth of the aerial organs most resistant to high concentrations of cadmium (CdSO4 400 µM) were  Madina, Violetta varieties, the least - Fisht, Marzhan. In comparison with the above-ground organs the roots were the most sensitive to the effects of cadmium.  According to a linear growth   rice varieties are lokated  in the following order: Barakat (23%)> Chapsari (18%)> Violetta (17%)> Fischt (7%)> Anahit (7%)> Marjane (5%)> Bakanas (4 %). It was studied the effect  of cadmium on biomass accumulation by above-ground organs of rice. On the biomass accumulation by above-ground organs the rice varieties are located in the following way: Madina (75%) > Baқanas (62%) > Barakat (15%)> Chapsari (13%) > Violetta (10%)> Marzhan (3%) = Anayt (3%) > Fisht (2%). The most resistant to high concentrations of cadmium (400 µM CdSO4) were  Madina, Violetta, Bakanas varieties, the least - Marzhan, Anayt and Fisht. In comparison with the above-ground organs the roots were the most sensitive to the effects of cadmium. 

References

Литература

1. Товажнянский Л.Л., Капустенко П.А., Хавин Г.Л. Комплексная переработка фосфогипса с извлечением редкоземельных элементов//Інтегровані технології та енергозбереження-2008.-№ 2. - 81 с.
2. Jones K.C., Johnston A.E. Cadmium in cereal grain and herbage from longterm experimental plots at Rothamsted // UK Environmental Pollution - 1989. - Vol. 57.- P. 199–216.
3. Kongshaug G., Bockman O.C., Kaarstad O., Morka H. Inputs of trace element
to soils and plants // Proceedings of Chemical Climatology and Geomedical Problems, Norsk Hydro, Oslo, Norway. - 1992. –
4. Kpomblekou A.K., Tabatabai,M.A. Metal contents of phosphate rocks // Commun. Soil Sci. Plant Anal. - 1994. – Vol. 25. - P. 2871–2882.
5. Sheppard S.C., Grant C.A., Sheppard M.I., De Jong R., Long J. Risk indicator for agricultural inputs of trace elements to Canadian soils// J. Environ. Qual. – 2009 – Vol.38. - P. 919–932.
6. TiradoR., Allsop M., Phosphorus in agriculture: problems and solutions // Greenpeace Research Laboratories. Technical Report (Review) - 2012. (htth: www. greenpeace.org).
7. Grant C.A., Monreal M.A., Irvine R.B., Mohr R.M., McLaren D.L., Khakbazan M. Preceding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage // Plant and Soil. - 2010. – Vol. 333. - P. 337–350.
8. Vassilev A., Lidon F. Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants // Emirates Journal of Food and Agriculture - 2011. - Vol.23(2). - P.130–136.
9. Gill S.S., Tuteja N. Cadmium stress tolerance in crop plants—probing the role of sulfur // Plant Signal Behav. - 2011. - Vol.6(2). - P.215–222.
10. Wang F.Y.,Wang H., Ma J.W. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—bamboo charcoal // Journal of Hazard Materials - 2010. – Vol. 177. - P. 300–306.
11. Nazar R., Iqbal N., Masood A., Khan M.I.R., Syeed S., Khan N.A. Cadmium toxicity in plants and role of mineral nutrients in its alleviation //AJPS. - 2012. – Vol. 3. - P. 1476–1489.
12. Tóth T., Zsiros O., Kis M., Garab G., Kovács L. Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803 // Plant Cell Environment - 2012. - Vol.35(12). - P. 2075–2086.
13. Coudert Y., Périn C., Courtois B., Khong N.G., Ganet P. Genetic control of root development in rice, the model cereal // Trends Plant Science. – 2010. – Vol. 15(4). - P. 219–226.
14. Lui H., Zhang J., Christie P., Zhang F. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedling grown in soil // Science of the Total Environment - 2008. - Vol.394. -P.361–368.
15. Lux A., Martink M., Vaculık M., White P.J.Root responses to cadmium in the rhizosphere: a review // J. Exp. Bot.- 2011. – Vol.62(1). -P.21–37.
16. He Q.B., Singh B.R. Cadmium availability to plants as affected by repeated applications of phosphorus fertilizers // Acta Agriculturae Scandinavica- 1995.- Vol. 45. - P. 22–31.
17. Grant C.A., Monreal M.A., Irvine R.B., Mohr R.M., McLaren D.L., Khakbazan M. Preceding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage // Plant and Soil. - 2010. – Vol. 333. - P. 337–350.
18. Lambert R., Grant C., Sauve S. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers // Sci. Total Environ. - 2007. - Vol. 378. - P. 293–305.
19. Коваль С.Ф. Исследование свойств клеточных мембран и устойчивости растений по вымываемости электролитов // Изв. Сиб. Отд. АН СССР. Серия биол. наук. – 1974. - № 15 (3). – С.161-167.
20. Кожушко И.Н. Изучение засухоустойчивости мирового генофонда яровой пшеницы для селекционных целей. – Ленинград, 1991. – 90 с.
21. Cobbett C.S. Phytochelatin biosynthesis and function in heavy metal detoxification // Curr. Opin. Plant Biol. – 2000. – Vol. 3. – P. 211-216.
22. Mattuis J.M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology // Toxicology. – 2000. – Vol. 153. – P. 83-104.
23. Rodrigues F.R., Francisco F.R., Pierre V.A. Changes in antioxidant enzyme activities in soybean under cadmium stress // J. Plant Nutr. – 2002. - N 2. – P. 327-342.
24. Romero M.C., Corpas F.J., Zabalza A., Rodrigues S. M. Differential expression and regulation of antioxidative enzymes by cadmium in plants // J. Plant Physiol. – 2007. – Vol. 164. – P. 1346-1357.

References

1. Tovazhnyansky LL, Kapustenko PA, Yavin GL (2008) Complex processing of phosphogypsum with extraction of rare earth elements. Integration of energy conservation technologies [Kompleksnaya pererabotka fosfogipsa s izvlecheniem redkozemelnyx elementov. Integrovannnye texnologii na energosberezheniya] 2:81. (In Russian)
2. Jones KC, Johnston AE (1989) Cadmium in cereal grain and herbage from longterm experimental plots at Rothamsted, UK Environmental Pollution, 57:199–216
3.Kongshaug G, Bockman OC, Kaarstad O, Morka H (1992) Inputs of trace element
to soils and plants, Proceedings of Chemical Climatology and Geomedical Problems,NorskHydro, Oslo, Norway.
4. Kpomblekou AK, Tabatabai MA (1994) Metal contents of phosphate rocks, Commun. Soil Sci. Plant Anal, 25:2871–2882
5. Sheppard SC, Grant CA, Sheppard MI, De Jong R, Long J (2009) Risk indicator for agricultural inputs of trace elements to Canadian soils, J. Environ. Qual. 38: 919–932
6. Tirado R, Allsop M, (2012) Phosphorus in agriculture: problems and solutions, Greenpeace Research Laboratories, Technical Report (Review), (htth: www. greenpeace.org).
7. Grant CA, Monreal MA, Irvine RB, Mohr RM, McLaren DL, Khakbazan M (2010) Preceding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage, Plant and Soil. 333: 337–350
8. Vassilev A, Lidon F (2011) Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants, Emirates Journal of Food and Agriculture, 23(2): 130–136
9. Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants—probing the role of sulfur, Plant Signal Behav, 6(2): 215–222
10. Wang FY,Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—bamboo charcoal, Journal of Hazard Materials, 177: 300–306
11. Nazar R, Iqbal N, Masood A, Khan M I R, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation, AJPS. 3: 1476–1489
12. Tóth T, Zsiros O, Kis M, Garab G, Kovács L (2012), Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803, Plant Cell Environment, 35(12): 2075–2086
13. Coudert Y, Périn C, Courtois B, Khong NG, Ganet P (2010) Genetic control of root development in rice, the model cereal, Trends Plant Science, 15(4): 219–226
14. Lui H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedling grown in soil, Science of the Total Environment, 394: 361–368
15. Lux A, Martink M, Vaculık M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot.62(1): 21–37
16.He QB, Singh BR (1995) Cadmium availability to plants as affected by repeated applications of phosphorus fertilizers, Acta Agriculturae Scandinavica, 45: 22–31
17. Grant CA, Monreal MA, Irvine RB, Mohr RM, McLaren DL, Khakbazan M (2010) Preceding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage, Plant and Soil. 333:337–350
18. Lambert R, Grant C, Sauve S. (2007) Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers, Sci. Total Environ.378:293–305
19. Koval S.F. (1974) Studying the properties of cell membranes and the resistance of plants by elution electrolytes. Series of Biological Sciences [Issledovanie svojstv kletochnyx membran i ustojchivosti rastenij po vymyvaemosti elektrolitov] 15 (3):161-167 (In Russian)
20.Kozhushko I.N. (1991) The study of global drought resistance winter wheat gene pool for breeding purposes, [Izuchenie zasuhoustojchivosti mirovogo genofonda yarovoj pshenicy dlya selekcionnyh celej] Leningrad : 90 (In Russian)
21. Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy metal detoxification, Curr. Opin. Plant Biol.3: 211-216
22. Mattuis JM, Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology, Toxicology, 153: 83-104
23. Rodrigues FR, Francisco FR, Pierre VA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress, J. Plant Nutr. 2: 327-342
24. Romero MC, Corpas FJ, Zabalza A, Rodrigues S, M, (2007) Differential expression and regulation of antioxidative enzymes by cadmium in plants, J. Plant Physiol.164:1346-1357

Downloads

How to Cite

Atabayeva, S. D., Nurmahanova, A. S., Kenzhebayeva, S. K., Asrandina, S. S., Kenzhebayeva, S. S., Alybayeva, R. A., Narmuratova, M., & Tynybekov, B. M. (2016). Rice plants in cadmium polluted environment. Experimental Biology, 68(3), 106–112. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1207

Issue

Section

PLANT PHYSIOLOGY AND BIOCHEMISTRY

Most read articles by the same author(s)

1 2 3 > >>