PHENOTYPIC VARIATION OF WINTER WHEAT COLLECTION FROM CENTRAL ASIA HARVESTED IN KAZAKHSTAN
DOI:
https://doi.org/10.26577/eb.2023.v96.i3.06Keywords:
winter wheat, genotype × environment interaction, yield componentsAbstract
In this study, the ecological testing of 139 accessions of the winter wheat collection from Central Asia was conducted on the field plots of the Kazakh Research Institute of Agriculture and Plant Industry (Almaty region, Southeast Kazakhstan) and Krasnovodopad Breeding Station (Turkestan region, South Kazakhstan) during 2020-2021 and 2021-2022 growing seasons. The collection was analyzed using 12 traits: heading date, seed maturation date, vegetation period, plant height, peduncle length, spike length, number of productive spikes, number of kernels per spike (NKS), weight kernel per spike, weight kernel per plants, thousand kernel weight (TKW) and yield per square meter (YM2). The Pearson correlation index showed positive correlations between yield-related traits in the two studied regions. The average YM2 value of 107 and 134 accessions exceeded the check cultivars in Almaty (Zhetisu) and Turkestan (Pamyat 47) regions, respectively. Seven cultivars (Karaspan, Mars 1, Pamyat, Dank, Zhamin, KYIAL, and Talimi) were revealed to be highly productive for three traits (NKS, TKW and YM2) in two regions. The analysis of variance showed that genotype × environment interaction affected the studied traits of the winter wheat collection from Central Asia under Kazakhstan's conditions. The results of this research will be used for further studies related to adaptation and productivity of winter wheat in the breeding program for the selection of best candidate lines and genome-wide association study for yield and yield-related traits in winter wheat.
References
Abugalieva A., Peña-Bautista R.J. (2010) Grain quality of spring and winter wheat of Kazakhstan, The Asian and Australasian Journal of Plant Science and Biotechnology, vol. 4, pp. 87-90
Amalova A., Yermekbayev K., Griffiths S., Winfield M.O., Morgounov A., Abugalieva S., Turuspekov Y. (2023) Population Structure of Modern Winter Wheat Accessions from Central Asia. Plants, vol. 12(12), p. 2233. doi: 10.3390/plants12122233
Collard B.C., Jahufer M.Z.Z., Brouwer J.B., Pang E.C.K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, vol. 142(1), pp. 169-196. doi: 10.1007/s10681-005-1681-5
Dospekhov B. Methods of field experience [Metodika polevogo opyta.]. Moscow: Kolos 1985, 350 p. [in Russian]
Duggan B.L., Domitruk D.R., Fowler D.B. (2000) Yield component variation in winter wheat grown under drought stress. Canadian Journal of Plant Science, vol. 80(4), p. 739-745. doi: https://doi.org/10.4141/P00-006
El-Feki W.M., Byrne P.F., Reid S.D., Haley S.D. (2018) Mapping quantitative trait loci for agronomic traits in winter wheat under different soil moisture levels. Agronomy, vol. 8(8), p. 133. doi: 10.3390/agronomy8080133.
Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#home (accessed on 25 February 2022)
Foreign Agricultural Service of the US Department of Agriculture (USDA) https://fas.usda.gov/ (accessed on 20 February 2022)
Halder J., Gill H.S., Zhang J., Altameemi R., Olson E., Turnipseed B., Sehgal S. K. Genome‐wide association analysis of spike and kernel traits in the US hard winter wheat // The Plant Genome. – 2023. – P. e20300.
Kumar A., Mantovani E.E., Simsek S., Jain S., Elias E.M., Mergoum M. (2019) Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite non-adapted bread wheat cross. PLoS One, vol. 14(9), p. e0221826. doi: 10.1371/journal.pone.0221826.
Morgounov A., Gómez-Becerra H. F., Abugalieva A., Dzhunusova M., Yessimbekova M., Muminjanov H., Zelenskiy Y., Ozturk L., Cakmak I (2006). Iron and zinc grain density in common wheat grown in Central Asia, Euphytica, 2006, vol. 155(1-2), pp. 193-203. doi:10.1007/s10681-006-9321-2
Newbury H. J. (2003) Plant molecular breeding. CRC Press., 265 p.
Pang Y., Liu C., Wang D., Amand P.S., Bernardo A., Li W., Li L., Wang L., Yuan X., Dong L., Su Y., Zhang H., Zhao M., Liang Y., Jia H., Shen X., Lu Y., Hongming J., Wu Y., Li A., Wang H., Kong L., Bai G., Liu S., Liu S. (2020) High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, vol. 13(9), pp. 1311-1327. doi: 10.1016/j.molp.2020.07.008
Rozbicki J., Ceglińska A., Gozdowski D., Jakubczak M., Cacak-Pietrzak G., Mądry W., Golda J., Piechocinski M., Sobczynski G., Studnicki M., Drzazga, T. (2015) Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. Journal of cereal science, vol. 61, pp. 126-132.
Shiferaw B., Smale M., Braun H.J., Duveiller E., Reynolds M., Muricho G. (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security, Food Security, vol. 5(3), p. 291-317. doi: 10.1007/s12571-013-0263-y
Studio Team 2023. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/
Sukumaran S., Dreisigacker S., Lopes M., Chavez P., Reynolds M. P. (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theoretical and applied genetics,vol. 128, №. 2, pp. 353-363
Tshikunde N.M., Mashilo J., Shimelis H., Odindo A. (2019) Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Frontiers in plant science, vol. 10, pp. 14-28.
Tura H., Edwards J., Gahlaut V., Garcia M., Sznajder B., Baumann U., Shahinnia F., Reynolds M., Langridge P., Balyan H.S., Gupta P.K., Schnurbusch T., Fleury D. (2020) QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theoretical and Applied Genetics, vol. 133, №.1, pp. 239-257.
USDA (2019) "Kazakhstan - Republic of Grain and Feed Update Kazakhstan Grain and Feed July Report", p.11.
Vavilov N.I. (1926) Centers of origin of cultivated plants [Tsentry proiskhozhdeniya kul'turnykh rasteniy]. Proceedings on Applied Botany and Breeding,vol. 16. № 2., 248 p. [in Russian]
Xu Y., Li P., Yang Z., Xu C. (2017) Genetic mapping of quantitative trait loci in crops. The Crop Journal, vol. 5, №. 2, pp. 175-184.