IDENTIFICATION OF THERMOPHILIC BACTERIA FROM THE HOT SPRING OF KAZAKHSTAN AND ASSESSMENT OF THEIR ENZYMATIC ACTIVITY

Authors

  • А.S. Kistaubaeva NJSC Kazakh National University named after Al-Farabi, Almaty, Kazakhstan
  • А.S. Mashzhan NJSC Kazakh National University named after Al-Farabi, Almaty, Kazakhstan
  • R. Javier-López University of Bergen
  • А.О. Bisenbay NJSC Kazakh National University named after Al-Farabi, Almaty, Kazakhstan
  • А.B. Talipova NJSC Kazakh National University named after Al-Farabi, Almaty, Kazakhstan
  • I.S. Savitskaya NJSC Kazakh National University named after Al-Farabi, Almaty, Kazakhstan
  • N.K. Birkeland University of Bergen

DOI:

https://doi.org/10.26577/eb.2023.v95.i2.06

Keywords:

thermophilic bacteria, identification, 16S rRNA, phylogenetic analysis, hydrolytic enzymes

Abstract

Thermophilic microorganisms are a less studied, but important group of microorganisms due to their ability to produce enzymes that are unique in their properties. In this regard, it is required to study previously unexplored thermal springs on the territory of Kazakhstan in order to search for new thermophilic microorganisms with biotechnological potential. For this purpose, under this study, for the first time, thermophilic bacteria from a geothermal source near the city of Zharkent, Almaty region, Republic of Kazakhstan were isolated and characterized for their ability to produce extracellular hydrolytic enzymes (amylase, cellulase, protease, and lipase). Based on the results of the studies, it was determined that three of the five isolates showed high enzymatic activity for all four types of enzymes and the rest produced at least several extracellular hydrolytic enzymes. Phylogenetic analysis for the universal bacterial 16s rRNA gene and biochemical characterization results (on API 50CHE and API Zym strips) showed that all derived isolates from the thermal spring differ from the currently known species of the genus Geobacillus, which indicates that this geothermal spring is a rich habitat for new unexplored species of microorganisms with unique enzymes. Moreover, one of the five isolates showed the highest optimal growth temperature at 75°C among the representatives of this genus.

References

Balan A., Ibrahim D., Abdul Rahim R., Ahmad Rashid F.A. “Purification and Characterization of a Thermostable Lipase from

Benson D.A., Karsch-Mizrachi .I., Lipman D.J., et al. “GenBank.” Nucleic Acids Res., 33(Database issue) (January 2005): D34–D38. DOI: 10.1093/nar/gki063

Bergey’s Manual® of Systematic Bacteriology. New York, USA: Springer, 2009, 19-1317.

Bioinformatics, Issue no. 9 (May 2014): 1312-3. DOI: 10.1093/bioinformatics/btu033

Busk P.K., Lange L. “Cellulolytic potential of thermophilic species from four fungal orders.” AMB Express., Issue no. 1 (August 2013): 47. DOI: 10.1186/2191-0855-3-47

Coolbear T., Daniel R., Morgan H. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and indus- trial relevance. Enzymes and Products from Bacteria Fungi and Plant Cells. Verlag, Germany: Springer-Verlag Berlin Heidelberg, 1992, 57-98.

Coorevits A., Dinsdale A.E., Halket G., et al. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus,

Cowan D.A. Industrial enzymes. Biotechnology, the Science and the Business. London, UK: CRC Press, 1991, 311-40.

DeCastro M.E., Rodriguez-Belmonte E., Gonzalez-Siso M.I. “Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes.” Front Microbiol., Issue no. 7 (September 2016): 1521. DOI: 10.3389/fmicb.2016.01521

Edgar Robert, “MUSCLE: multiple sequence alignment with high accuracy and high throughput.” Nucleic Acids Res., Issue no. 5 (March 2004): 1792-7. DOI: 10.1093/nar/gkh340

G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol., Issue no 7 (Jule 2012): 1470-85. DOI: 10.1099/ijs.0.030346-0 36 Adiguzel A., Ozkan H., Baris O., et al. Identification and characterization of thermophilic bacteria isolated from hot springs

Geobacillus sp. EPT9.” World J Microbiol Biotechnol., Issue no. 2 (February 2015): 295-306. DOI: 10.1007/s11274-014-1775-0

Geobacillus thermodenitrificans IBRL-nra.” Enzyme Res., (November 2012): 1-7. DOI: 10.1155/2012/987523

Geobacillus. Int. J. Syst. Bacteriol., Issue no 55 (May 2005): 1171-9. DOI: 10.1099/ijs.0.63452-0

Goh K.M., Kahar U.M., Chai Y.Y., et al. “Recent discoveries and applications of Anoxybacillus.” Appl Microbiol Biotech- nol., Issue no. 97 (February 2013): 1475-88. DOI: 10.1007/s00253-012-4663-2

Goloboff P.A., Farris J.S., Nixon K.C., “TNT, a free program for phylogenetic analysis.” Cladistics., Issue no. 5 (Jul 2008): 774-86. DOI: 10.1111/j.1096-0031.2008.00217.x

Gupta G., Srivastava S., Khare S., Prakash V. “Extremophiles: an overview of microorganism from extreme environment.”

in Turkey. J. Microbiol. Methods., Issue no 3 (December 2009): 321-8. DOI: 10.1016/j.mimet.2009.09.026

Int. j. environ. agric. biotech., Issue no. 2 (June 2014): 371-80. DOI: 10.5958/2230-732X.2014.00258.7

Iqbal I., Aftab M.N, Afzal M., et al. “Purification and characterization of cloned alkaline protease gene of Geobacillus stea- rothermophilus.” J Basic Microbiol., Issue no. 2 (September 2015): 160-71. DOI: 10.1002/jobm.201400190

Kasana R.C., Salwan R., Dhar H., et al. “A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine.” Curr. Microbiol., Issue no. 5 (September 2008): 503-7. DOI: 10.1007/s00284-008-9276-8

Kovacs N. “Identification of Pseudomonas pyocyanea by the oxidase reaction.” Nature, Issue no. 4535 (September 1956): 703. DOI: 10.1038/178703a0

Kuisiene N., Raugalas J., Chitavichius D. Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol., Issue no 6 (November 2004): 1991-5. DOI: 10.1099/ijs.0.02976-0

Kumar S., Stecher G., Li M., et al. “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.”

López-López O., Cerdán M.E., González-Siso M.I. “Hot spring metagenomics. Life.” Issue no. 2 (February 2013): 308-20. DOI: 10.3390/life3020308

Mashzhan A, Javier-López R, Kistaubayeva A, Savitskaya I, Birkeland N-K. “Metagenomics and Culture-Based Diversity Analysis of the Bacterial Community in the Zharkent Geothermal Spring in Kazakhstan”. Current Microb. Issue no. 8 (August 2021). DOI: 10.1007/s00284-021-02545-2

Meier-Kolthoff J.P., Auch A.F., Klenk H.P., Goker M. “Genome sequence-based species delimitation with confidence intervals and improved distance functions.” BMC Bioinf., Issue no. 60 (February 2013). DOI: 10.1186/1471-2105-14-60

Meier-Kolthoff JP., Hahnke R.L., Petersen J., et al. “Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy.” Stand. Genomic Sci., Issue no. 2 (December 2014). DOI: 10.1186/1944-3277-9-2

Mol Biol Evol., Issue no. 6 (June 2018): 1547-9. DOI: 10.1093/molbev/msy096

Naganthran A., Masomian M., Rahman R.N., Ali M., Nooh H. “Improving the Efficiency of New Automatic Dishwashing Detergent Formulation by Addition of Thermostable Lipase, Protease and Amylase.” Molecules., Issue no. 9 (September 2017): DOI:10.3390/molecules22091577

Nazina T., Tourova T., Poltaraus A., et al. “Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearother- mophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacil- lus as the new combinations G. stearothermophilus, G. th”, Int. J. Syst. Evol. Microbiol., Issue no. 2 (March 2001): 433-46. DOI: 10.1099/00207713-51-2-433

Novik G., Savich V., Meerovskaya O. Geobacillus Bacteria: potential commercial applications in industry, bioremediation, and bioenergy production, in: Mishra, M. (Eds.), Growing and Handling of Bacterial Cultures. London, UK: IntechOpen, 2018. DOI: 10.5772/intechopen.76053

Pattengale N.D., Alipour M., Bininda-Emonds O.R.P. et al., “How Many Bootstrap Replicates Are Necessary?”.J. Comput. Biol., Issue no. 3 (April 2010): 337-54. DOI: 10.1089/cmb.2009.0179

Raddadi Noura, Cherif Ameur, Daffonchio Daniele, et al. “Biotechnological applications of extremophiles, extremozymes and extremolytes.” Appl. Microbiol. Biotechnol., Issue no. 19 (October 2015): 7907-13. DOI: 10.1007/s00253-015-6874-9

Rice P., Longden I., Bleasby A. “EMBOSS: The European molecular biology open software suite.” Trends Genet., Issue no. 6 (Jun 2000): 276-7. doi: 10.1016/s0168-9525(00)02024-2

Schleifer K-H. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5).

Shaikh N.M., Patel A., Mehta S., Patel N. “Isolation and Screening of Cellulolytic Bacteria Inhabiting Different Environ- ment and Optimization of Cellulase Production.” Univers. J. Environ. Res. Technol., Issue no. 1 (2013): 39-49.

Shokatayeva D., Ignatova L., Savitskaya I., et al. “Bacterial Cellulose and Pullulan from Simple and Low Cost Production Media.” Eurasian Chem.-Technol. J., Issue no. 3 (February 2019): 247-58. DOI: 10.18321/ectj866

Stamatakis Alexandros, “RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.”

Suzuki Hirokazu. “Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species.” Appl Microbiol Biotechnol, Issue no. 102 (December 2018): 10425-37. DOI: 10.1007/s00253-018-9422-6

Swofford D, “PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0 b10. Sunderland, UK: Sinauer Associates, 2002, 49-56.

Tatusova T. “Update on Genomic Databases and Resources at the National Center for Biotechnology Information. In: Carugo O., Eisenhaber F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology. New York, USA: Humana Press, 2016, 3-30.

Verma A., Gupta M., Shirkot P. Isolation and characterization of thermophilic bacteria in natural hot water springs of Himachal Pradesh (India). Bioscan., Issue no 3 (July 2014): 947-52.

Wehr H.M., Frank JF. Standard methods for the examination of dairy products. 17thedn. Washington, DC, USA: American Public Health Association, 2004, 36-57

Woese CR., Gutell R., Gupta R., Noller H.F. “Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids.” Microbiol Rev., Issue no. 4 (December 1983): 621-69

Yang S., Potprommanee L., Wang X-Q. et al. “Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass.” Plos One., Issue no. 4 (April 2017). doi: 10.1371/ journal.pone.0175004

Zeigler D.R. “The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet?” Micro- biology, Issue no. 1 (January 2014): 1-11. DOI: 10.1099/mic.0.071696-0

Zeigler D.R. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus

Zhu W., Cha D., Cheng G., et al. “Purification and characterization of a thermostable protease from a newly isolated Geoba- cillus sp. YMTC 1049.” Enzyme Microb. Technol., Issue no. 6 (May 2007): 1592-7. DOI: 10.1016/j.enzmictec.2006.11.007

Zhu Y., Li H., Ni H., et al. “Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile

Downloads

Published

2023-06-20

Most read articles by the same author(s)