CREATION OF AN IMMOBILIZED PROBIOTIC BASED ON BACTERIAL CELLULOSE FOR THE CORRECTION OF THE INTESTINAL MICROBIOME

Authors

  • I.S. Savitskaya al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.S. Kistaubayeva al-Farabi Kazakh National University, Kazakhstan, Almaty
  • D. Kh. Shokatayeva al-Farabi Kazakh National University, Kazakhstan, Almaty
  • I.I. Abashidze «AMD Clinic» LLP, Almaty, Kazakhstan
  • F.S. Seishanlo al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.N. Amangeldy al-Farabi Kazakh National University, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/eb.2023.v97.i4.07

Keywords:

bacterial cellulose, B. subtilis, dysbiosis

Abstract

The structural features of bacterial cellulose (BC) make it very popular to use it for creating composite materials. Immobilization of bacteria of the Bacillus genus in BC polymer gives the carrier matrix new functional properties that help restore and maintain a favorable balance of microflora in the gastrointestinal tract. The addition of sodium alginate had a positive effect on the synthesis of BC by K. xylinus C-3, providing a polymer yield of 12.11 g/l.  The "adsorption-incubation" method was used for surface and spatial immobilization of Bacillus subtilis, which provides a high concentration of cells – 108 CFU per 1 g of carrier. The BC/Bacillus biocomposite inhibited the growth of E. coli, S. typhi, S. typhimurium, Citr. aerogenes, and P. vulgaris up to 85.4% after 24 hours of contact, and after 72 hours completely inhibited the growth and viability of test organisms in vitro. Immobilized probiotics significantly exceeded the suspension of free microbial ells in terms of resistance to gastric juice. The activity of probiotics in vivo determined on models of experimental dysbiosis. Probiotic microgranules of BC/B.subtilis can be used to correct the microbiocenosis of the large intestine.

References

Abbas Rezaee, Hatam Godini, Hossein Bakhtou (2008) Microbial cellulose as support material for the baization of denitrifying bacteria. Environmental Engineering and Management Journal, vol.7., No.5., pp. 589-594.

Batista M.T., Souza R.D., Paccez J.D., Luiz W.B., Ferreira E.L., Cavalcante R.C., Ferreira R.C., Ferreira L.C. (2014) Gut Adhesive Bacillus subtilis Spores as a Platform for Mucosal Delivery of Antigens. Infect. Immun., vol. 82., pp. 1414–1423.

Bondarenko V.M., Gracheva N.M., Maculevich T.V. (2003) Disbakteriozy kishechnika u vzroslyh. KMK Scientific Press, p. 220.

Bunthof C.J., Abee T. (2002) Development of a flow cytometric method to analize subpopulation of bacteria in probiotic products and dairy starters. Applied and Environmental Microbiology, vol. 68, № 6, pp. 2934-2942.

CLSI (1998), Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline, CLSI document M26-A. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500, Wayne, Pennsylvania 19087, USA.

Chiaoprakobkij N., Sanchavanakit N., Subbalekha K., Pavasant P., Phisalaphong M. (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr. Polym., vol. 85, pp. 548–553.

Czaja W., Romanovicz D., Brown R. M. (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, vol. 11, pp. 403-411.

Gipradi G. (2009) Effect of an adjunctive treatment with Bacillus subtilis for food allergy. Chemioterapia, vol. 5, No. 6, pp. 408-410.

Guimarães J. T., Balthazar C. F., Silva R., Esmerino E. A., Silva M. C., Sant’Ana A. S., Cruz A. G. (2020) Impact of probiotics and prebiotics on food texture. Current Opinion in Food Sciencе, № 33, pp. 38–44.

Hornung M., Ludwig M., Gerrard A. M., Schmauder H. P. (2016) Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1) Engineering in Life Sciences, № 6, pp. 537-545.

Hosoi T., Ametani A., Kiuchi K., Kaminogawa S. (2000) Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can. J. Microbiol., vol. 46., pp. 892–897.

Joseph G., Rowe G.E., Margaritis A., Wan W. (2003) Effects of polyacrylamide-co-acrylic acid on cellulose production by Acetobacter xylinum. Journal of Chemical technology and Biotechnology, vol. 78, No. 9, pp. 964-970.

Karol Fijarkowski, Dorota Peitler., Rafal Racozcy., Anna Zywicka (2016) Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. Food Science and Technology, vol. 68, pp. 322-328.

Kebary K.M. (2018) Improving viability of probiotics and their effect by immobilization. Egyptian journal dairy science, vol. 26, pp. 319-337.

Khochamit N., Siripornadulsil S., Sukon P., Siripornadulsil W. (2015) Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: Potential as a probiotic strain. Microbiol. Res., vol. 170, pp. 36–50.

Kouda T., Yano H., Yoshinaga F. (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. Journal of Fermentation and Bioengineering, vol. 83, No. 4, pp. 371-376.

Leboffe, M. J., Pierce, B. E. (2006) Microbiology: Laboratory theory and application. 2th edn. Colorado: Morton., pp. 576-630.

Lefevre M., Racedo S.M., Denayrolles M., Ripert G., Desfougères T., Lobach A.R., Simon R., Pélerin F., Jüsten P., Urdaci M.C. (2017) Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul. Toxicol. Pharmacol., vol. 83, pp. 54–65.

Lefevre M., Racedo S.M., Ripert G., Housez B., Cazaubiel M., Maudet C., Jüsten P., Marteau P., Urdaci M.C. (2015) Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study. Immun. Ageing., vol. 12, pp. 24.

Lee H., Zhao X. Effects of mixing conditions on the production of microbial cellulose by Acetobacter xylinum (1999). Biotechnology and Bioprocess Engineering, vol. 4, No. 1, pp. 41-45.

Lihoded V.G., Bondarenko V.M. (2007) Antiendotoksinovyj immunitet v regulyacii chislennosti esherihioznoj mikroflory kishechnika. Medicina, pp. 216.

Markowiak P., & Śliżewska K. (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, vol. 9(9), pp. 1021-1051.

Mortazavian A.M., Mohammadi R., Sohrabvandi S. (2012) Delivery of probiotic microorganisms into gastrointestinal tract by food products. New Advances in the Basic and Clinical Gastroenterology, № 61, pp. 121-146.

Mounyr B., Moulay S., Saad K.I. (2016) Methods for in vitro evaluating antimicrobial activity. Journal of Pharmaceutical Analysis, vol. (6), pp. 71–79.

Nguyen D. N., Ton N. M. N. and Le V. V. M. (2009) Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption- incubation’ method. International Food Research Journal, vol. 16, pp. 59-64

Santos S.M., Carbajo J.M., Quintana E., Ibarra D., Gomez N., Ladero M., et al. (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr. Polym., vol. 116, pp. 173–181.

Sharma A., Thakur M., Bhattacharya M., Mandal T., Goswami S. (2019) Commercial application of cellulose nano-composites - A review. Biotechnology Reports, vol. 21, pp. e00316.

Smirnov V.V., Reznik S.R., V'yunickaya V.A. (2002) Sovremennye predstavleniya o mekhanizmah lechebno profilakticheskogo dejstviya probiotikov iz bakterij roda Bacillus// Zhurnal Mikrobiologii, vol. 24, № 4, pp. 92-112.

Suwannapinunt N., Burakorn J., Thaenthanee S. (2007) Effect of culture conditions on bacterial cellulose production from Acetobacter xylinus TISTR976 and physical properties of BC parchment paper. Journal of Science and Technology, vol.14(4), pp. 357-365.

Thomas P., Duolikun T., Rumjit N. P., Moosavi S., Lai Ch. W., Johan M. R. B., Fen L. B. (2020) Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. Journal of the Mechanical Behavior of Biomedical Materials, vol. 110, pp. 103884.

Ton N.M.N., Le V.V.M. (2011) Application of immobilized yeast in bacterial cellulose to the repeated batch fermentation in wine-making. International Food Research Journal, vol.18(3), pp. 983-987.

Toyosaki H., Naritomi T., Seto A., Matsuoka M., Tsuchida T., Yoshinaga F. (1995) Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Bioscience, biotechnology and biochemistry, vol. 59, No. 8, pp. 1498-1502.

Tran Thi Minh Tam, Nguyen Thuy Huong (2014) Optimization of Corynebacterium glutamicum immobilization process on bacterial cellulose carrier and its application for lysine fermentation. IOSR Journal of Engineering (IOSRJEN), vol. 04, No 07, pp. 33-38.

Urdaci M.C., Pinchuk I. (2004) Antimicrobial activity of Bacillus probiotics. In Bacterial Spore Formers–Probiotics and Emerging Applications. Horizon Bioscience: Norfolk, UK, pp. 171–182.

Vandamme E. J., De Baets S., Vanbaelen A., Joris K., De Wulf, P. (2018) Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, vol. 53, pp. 93-99.

Yao W., Wu X., Zhu J., Sun B., Zhang Y. Y., Miller C. (2011) Bacterial cellulose membrane - a new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, № 46, pp. 2054-2058.

Zabokrickij A.N., Larionov L.P., Plohushko E.N., Vasil'ev P.G., Zabokrickij N.A. (2006) Eksperimental'naya ocenka effektivnosti novogo baktrijnogo preparata subtilakt pri lechenii disbakteriozov. Himiko-farmacevticheskij zhurnal, №5, pp. 3-7.

Żywicka А., Wenelska K., Junkav A., Chodaczek G., Szymczyk P., Fijałkowski K. (2019) Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World Journal of Microbiology and Biotechnology, vol. 35, pp. 4-5.

Downloads

Published

2023-12-20

Most read articles by the same author(s)