DIFFERENTIAL CYTOKINE RESPONSE OF IMMUNOCOMPETENT CELLS TO THE INDUCTION OF RESISTANT, REVERTANT AND SENSITIVE ESCHERICHIA COLI
DOI:
https://doi.org/10.26577/eb.2022.v92.i3.06Keywords:
Cytokines, resistant, revertant, sensitiveAbstract
The work is devoted to the study of the influence of the resistance phenotype of E. coli subcultures on the functionality of evolutionarily conserved pathogen-associated antigens (PAMP) and a special class of pathogen-associated molecular patterns indicating the viability of microbes (vitaPAMP) on immunocompetent human peripheral blood cells. In this work, we used the resistant E. coli strain ATCC BAA-2523, the sensitive E. coli strain ATCC 8739, and the revertant subculture of Escherichia coli obtained under experimental conditions from the E. coli strain ATCC BAA-196. Using enzyme immunoassay, we performed a comparative analysis of mononuclear (PBMC), monocytic (MON), and lymphocytic (LIM) cytokine responses to the induction of resistant, revertant, and susceptible E. coli subcultures by living and fixed cells. It turned out that the PAMP structures of subcultures of fixed E. coli cells are predominantly recognized by human PBMCs. While the pathogen-associated molecular patterns of living E. coli cells are recognized by different target cells, therefore, PBMCs primarily respond to the structures of the vitaPAMP-resistant subculture, while the structures of the revertant E. coli – human MON react to the structures of the vitaPAMP, which is a sensitive strain and PBMC – and MON respond to vitaPAMP. It has also been shown that, in response to fixed cultures of E. coli S and E. coli R, there is a decrease in the threshold level of production of IL-1β, IL-6 and TNF-α in both PBMCs and monocytes, compared with the level of cytokine production induced by live bacteria. Whereas fixed cells of revertant E. coli caused a higher production of pro-inflammatory cytokines PBMC than living cells of this culture.
References
Drlica K. The mutant selection window and antimicrobial resistance // Antimicrobial Chemotherapy. – 2003. – Vol. 52. – P. 11-17.
Pamer E.G. Immune responses to commensal and environmental microbes // Nat. Immunol. – 2007. – Vol. 8. – P. 1173-1178.
Happel K.I., Bagby G.J., Nelson S. Host defense and bacterial pneumonia // Semin. Respir. Crit. Care Med. – 2004. – Vol. 25, No 1. – P. 43-52.
Mueller M., de la Pena A., Derendorf H. Issues in pharmacokinetics and pharmacodynamics of
anti-infective agents: kill curves versus MIC // Antimicrob. Agents Chemother. – 2004. – Vol. 48,
No 2. – P. 369-377.
DeRyke C.A., Lee S.Y., Kuti J.L., Nicolau D.P. Optimising dosing strategies of antibacterials utilising pharmacodynamic principles: impact on the development of resistance // Drugs. – 2006. – Vol. 66,
No 1. – P. 1-14.
Ambrose P.G., Bhavnani S.M., Rubino C.M., Louie A., Gumbo T., Forrest A. et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it's not just for mice anymore // Clin. Infect. Dis. – 2007. – Vol. 44, No 1. – P. 79-86.
Zhao X., Drlica K. A unified anti-mutant dosing strategy // Antimicrob. Chemother. – 2008. – Vol. 62, No 3. – P. 434-436.
Jumbe N., Louie A., Leary R., Liu W., Deziel M.R., Tam V.H. et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy // Clin. Invest. – 2003. – Vol. 112, No 2. – P. 275-285.
Drlica K., Zhao X.L. Is ‘dosing-to-cure’ appropriate in the face of antimicrobial resistance? // Rev. Med. Microbiol. – 2004. – Vol. 15, No 2. – P. 73-80.
Tumbarello M. et al. Predictors of mortality in patients with bloodstream infections caused by
extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment // Antimicrob. Agents Chemother. – 2007. – Vol. 51, No 6. – P. 1987-1994.
Kumarasamy K.K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study // Lancet Infect. Dis. – 2010. – Vol. 10, No 9. – P. 597-602.
Fleming A. Penicillin. Nobel Lectures. https://www.nobelprize.org/?p=12848&pagespeed=noscript?pagespeed=noscript. 11.08.2021.
World Health Organization 2012. The evolving threat of antimicrobial resistance: options for action. http://whqlibdoc.who.int/publications/2012/9789241503181_eng.pdf. 11.08.2021.
Cotroneo N., Rubio A., Critchley I.A., Pillar C., Pucci M.J. In vitro and in vivo characterization of tebipenem, an oral carbapenem // Antimicrob. Agents Chemother. – 2020. – Vol. 64, No 8.
Zhang D., Chen J., Jing Q., Chen Z., Ullah A., Jiang L., Zheng K., Yuan C. and Huang M. Development of a Potent Antimicrobial Peptide With Photodynamic Activity // Front. Microbiol. – 2021. – Vol. 12.
Volodina G.V., Davtyan T.K., Kulmanov M.E., Dzhumagazieva A.B., Tursunova S.K., Abekova A.O. et al. The effect of antibiotic-resistant and sensitive Escherichia coli on the production of pro-inflammatory cytokine response by human peripheral blood mononuclear cells // J. Clin. Cell Immunol. – 2017. –
Vol. 8, No 522.
Korotetskiy I.S., Joubert M., Taukobong S. et al. Complete Genome Sequence of a Multidrug-Resistant Strain, Escherichia coli ATCC BAA-196, as a Model for Studying Induced Antibiotic Resistance Reversion // Microbiol. Resour. Announc. – 2020. – Vol. 9, No 50.
Mourao-Sa D., Roy S., Blander J.M. Vita-PAMPs: signatures of microbial viability // Adv. Exp. Med. Biol. – 2013. – Vol. 785. – P. 1-8.
Schnare M., Barton G.M., Holt A.C., Takeda K., Akira S., Medzhitov R. Toll-like receptors control activation of adaptive immune responses // Nat. Immunol. – 2001. – Vol. 2. – P. 947-950.
Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity // Immunity. – 2011. – Vol. 34. – P. 637-650.
Akira S., Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family // Immunol. Lett. – 2003. – Vol. 85. – P. 85-95.
Granucci F., Feau S., Zanoni I., Pavelka N., Vizzardelli C., Raimondi G. et al. The immune response is initiated by dendritic cells via interaction with microorganisms and interleukin-2 production // J. Infect. Dis. – 2003. – Vol. 187. – P. 346-350.
Sharpe A.H. Mechanisms of costimulation // Immunol. Rev. – 2009. – Vol. 229. – P. 5-11.
Medzhitov R. Recognition of microorganisms and activation of the immune response // Nature. –
– Vol. 449. – P. 819-826.
Blander J.M., Sander L.E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat // Nature Rev. Immunology. – 2012. – Vol. 12. – P. 215-225.
Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity // Cell. – 2006. –
Vol. 124. – P. 783-801.
Koenig C.H., Finger H., Hof H. Failure of killed Listeria monocytogenes vaccine to produce protective immunity // Nature. – 1982. – Vol. 297. – P. 233-234.
Detmer A., Glenting J. Live bacterial vaccines – a review and identification of potential hazards // Microbology Cell Fact 5. – 2006. – Vol. 5. – P. 23.
Sander L.E., Michael J., Mark V. Sensing prokaryotic mRNA signifies microbial viabilty and promotes immunity // Nature. – 2012. – Vol. 474. – P. 385-389.
Ahmed S.T., Ivashkiv L.B. Inhibition of IL-6 and IL-10 signaling and stat activation by inflammatory and stress pathways // Immunol. – 2000. – Vol. 165, No 9. – P. 5227-5237.