CSN3 gene distribution frequency in camels of Almaty region
DOI:
https://doi.org/10.26577/eb-2019-4-b4Abstract
Camel breeding is the important industry of agriculture which provides the food and light industry with milk, wool, leather, etc. products. Especially, shubat obtained from camel milk due to its special taste and medical properties is in great demand in the market. In this way, in order to improve the breeding of camels in the dairy direction, it is very important to carry out selection work in this direction. The total amount of caseins that make up camel milk is about 75% of milk protein. These caseins consist of four fractions encoded by the genes CSN1S1, CSN1S2, CSN2 and CSN3: alpha s1, alpha s2, beta and κ-casein. Genetic polymorphism of the above-mentioned genes determines the quantitative and technological properties of milk. Propagation of homozygous animals by these genes is carried out in order to improve the qualitative properties of milk, namely fat content and nutrition. The most beneficial and affordable method for studying these genes is the PCR-RFLP method.
In this work, there was studied the polymorphism of the CSN3 gene, which is involved in the formation of qualitative traits of milk in several two-humped camel (Camelus bactrianus) populations that are bred in farms of the Almaty region. Among the 53 camels selected for study, the «useful» cytosine frequency is 0.39. As well, among the studied populations, Hardy-Weinberg equlibrium was determined by the distribution of genotypes (χ2 = 12.1).
Key words: camels, dairy productivity, kappa casein, PCR-RFLP analysis.
References
2. http://agroinfo.kz/verblyudovodstvo-v-kazakhstane/
3. Sabir T. NURTAZI, Margulan K. IKLASOV, Kaoru IMAMURA Economic Use of Camels in Kazakhstan Past, Present and Future Perspectives // Journal of Arid Land Studies. – 2016. – Vol. 26, No 4. – P. 199 – 203.
4. Huiguang Wu et. al. Camelid genomes reveal evolution and adaptation to desert environments // Nat Commun. – 2014. DOI:10.1038/ncomms6188
5. Naruya Saitou, Shayire Shokat DNA analyses of camels // Journal of Arid Land Studies. – 2017. – Vol. 26, No. 4. – P. 223-226.
6. E.A.Глaдыpь, A.М.Зaйцeв и дp. Мoдeлиpoвaниe тecт-cиcтeмы aнaлизa микpocaтeллитoв вepблюдoв // Дocтижeния нayки и тeхники AПК. – 2011. - №10. – C. 63-65.
7. http://worldgonesour.ru/verblyudovodstvo/484-molochnaya-produktivnost.html
8. Konuspayeva G., Lemarie E., Faye B., Loiseau G., Montet D. Fatty acid and cholesterol composition of camel’s (Camelus bactrianus, Camelus dromedaries and hybrids) milk in Kazakhstan // Dairy Science and Technology. – 2008. – Vol. 88. – P. 327-340.
9. Кoнycпaeвa Г.C., Фaй Б., Мeлдeбeкoвa A.A., Нapмypaтoвa М.Х., Cepикбaeвa A.Д. Типoлoгия вepблюжьeгo мoлoкa paзличных peгиoнoв Кaзaхcтaнa // Вecтник КaзНY. Cepия биoлoгичecкaя. – 2018. – Т.74. - №1. - C. 123-138.
10. Бaймyкaнoв Д.A. Ceлeкция вepблюдoв пopoды кaзaхcкий бaктpиaн и мeтoды их coвepшeнcтвoвaния // Aлмaты: Бacтay. – 2009. – C. 280.
11. Gonzalez-Recio O, Coffey MP, Pryce JE. On the value of the phenotypes in the genomic era // Journal of Dairy Science. – 2014. – Vol. 97, No 12. 7905-15. doi: 10.3168/jds.2014-8125.
12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422876/.
13. Rijnkels, M. Multi specie comparison of the casein gene loci and evolution of casein gene family // J. Mamm. Gland Biol. – 2002. – No 7. – P. 327–345.
14. Kawasaki K., Lafont A. G., Sire J. Y. The evolution of milk casein genes from tooth genes before the origin of mammals // Mol. Biol. Evol. – 2011. – Vol. 28. – P. 2053–2061.
15. Pauciullo A, Shuiep E.T., Ogah M.D., Cosenza G., Di Stasio L., Erhardt G. Casein Gene Cluster in Camelids: Comparative Genome Analysis and New Findings on Haplotype Variability and Physical Mapping // Front. Genet. – 2019. – Vol. 10, No 748. doi: 10.3389/fgene.2019.00748.
16. Pauciullo A., Shuiep E.S., Cosenza G., Ramunno L., Erhardt G. Molecular characterization and genetic variability at -casein gene (CSN3) in camels // Gene. – 2013. – Vol. 513. – P. 22-30.
17. Pauciullo et al. The β-casein in camels: Molecular characterization of the CSN2 gene, promoter analysis and genetic variability // Gene. – 2014. – Vol. 547, No 1. – P. 159-168.
18. Shuiep E., Giambra I.J., El Zubeir I.E., Erhardt G. Biochemical and molecular characterization of polymorphisms of α s1-casein in Sudanese camel (Camelus dromedarius) milk // Int. Dairy J. – 2013. – Vol. 28, No 2. – P. 88–93.
19. Pauciullo A., Erhardt G. Molecular characterization of the llamas (Lama glama) casein cluster genes transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and regulatory regions // PloS one. – 2015. – Vol. 10, No 4, doi: 10.1371/journal. pone.0124963.
20. Saadaoui B., Bianchi L., Henry C., Miranda G., Martin P., Cebo C. Combining proteomic tools to characterize the protein fraction of llama (Lama glama) milk // Electrophoresis. – 2014. – Vol. 35. – P. 1406–1418.
21. Erhardt G., Gu M., Wagner H., Di Stasio L., Pauciullo A. Vicugna pacos αs1-casein: identification of new polymorphisms at the CSN1S1 gene // Proceedings of the 7th European Symposium on South American Camelids and 3rd European Meeting on Fibre Animals. – 2017 (June, Italy: Assisi, 36.). – P. 12–17.
22. Kappeler S.R., Farah Z., Puhan Z. 5′-Flanking regions of camel milk genes are highly similar to homologue regions of other species and can be divided into two distinct groups // J. Dairy Sci. – 2003. – Vol. 86. – P. 498–508.
23. Hinz K., O'Connor P.M., Huppertz T., Ross R.P., Kelly A.L. Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk // J. Dairy Res. – 2012. – Vol. 79. – P. 185–191.
24. Yelubayeva M. E. , Buralkhiyev B. A. , Tyshchenko V. I. , Terletskiy V. P. , Ussenbekov Y. S. Results of Camelus dromedarius and Camelus bactrianus Genotyping by Alpha-S1-Casein, Kappa-Casein Loci, and DNA Fingerprinting // Cytology and Genetics. – 2018. - Vol. 52. – P. 179-185.
25. https://docplayer.ru/63720103-Instrukciya-dnk-sorb-s-m.html
26. Бeкмaнoв Б.O., Aмиpгaлиeвa A.C., Мycaeвa A.C., Opaзымбeтoвa З.C., Дocыбaeв К.Ж., Хycaинoвa Э.М., Жaпбacoв P.Ж., Жoмapтoв A.М., Тyлeкeй М.Д. Мoлeкyляpнo-гeнeтичecкий aнaлиз oвeц Eдильбaйcкoй пopoды // Извecтия Нaциoнaльнoй aкaдeмии нayк Pecпyблики Кaзaхcтaн. - 2015. - № 3. – C. 28-33.
27. Reiner A.P. et al. Common coding variants of the HNF1A gene are associated with multiple cardiovascular risk phenotypes in community-based samples of younger and older European–American adults: the coronary artery risk development in young adults study and the cardiovascular health study // Circ. Cardiovasc. Genet. – 2009. – Vol. 2. – P. 244–254.
28. Mendel D.B., Crabtree G.R. HNF- 1, a member of a novel class of dimerizing homeodomain proteins // J. Biol. Chem. – 1991. - Vol. 266. – P. 677–680.
29. Dunn C.A., Medstrand P., Mager D.L. An endogenous retroviral long terminal repeat is the dominant promoter for human β1,3-galactosyltransferase 5 in the colon // PNAS. – 2003. – Vol. 100. – P. 12841–12846.
30. McBryan J., Howlin J., Kenny P.A., Shioda T., Martin F., ERalpha-CITED1 coregulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis // Oncogene. – 2007. – Vol. 26. – P. 6406–6419.
31. Schild T.A., Geldermann H. Variants within the 5'-flanking regions of bovine milk-protein-encoding genes. III. Genes encoding the Ca-sensitive caseins αs1, αs2 and β // Theor. Appl. Genet. -1996. – Vol. 93. – P. 887–893.
32. Othman et. al., Genetic variations in two casein genes among Maghrabi camels reared in Egypt // Biosciences Biotechnology research Asia. – 2016. – Vol. 13. – No 1. – P. 473-480.
References
1. Baimukanov D.A., Baimukanov A. (2009) Genetics, selection and hybridization of camels. The monograph. Almaty: Bastay., pp. 64.
2. http://agroinfo.kz/verblyudovodstvo-v-kazakhstane/
3. Sabir T. NURTAZI, Margulan K. IKLASOV, Kaoru IMAMURA. (2016) Economic Use of Camels in Kazakhstan Past, Present and Future Perspectives. Journal of Arid Land Studies, vol. 26, no. 4, pp. 199 – 203.
4. Huiguang Wu et. al. (2014) Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun., DOI:10.1038/ncomms6188
5. Naruya Saitou, Shayire Shokat (2017) DNA analyses of camels. Journal of Arid Land Studies, vol. 26, no. 4, pp. 223-226.
6. Gladyr E.A., Zaycev A.М. et. al. (2011) Modelirovaniye test-sistemy analiza microsatellitov verbludov [Modeling a test system for the analysis of camel microsatellites]. Dostizheniya nauki I techniki APK, no. 10, pp. 63-65.
7. http://worldgonesour.ru/verblyudovodstvo/484-molochnaya-produktivnost.html
8. Konuspayeva G., Lemarie E., Faye B., Loiseau G., Montet D. (2008) Fatty acid and cholesterol composition of camel’s (Camelus bactrianus, Camelus dromedaries and hybrids) milk in Kazakhstan. Dairy Science and Technology, vol. 88, pp. 327-340.
9. Konuspayeva G.S., Fai B., Meldebekova A.A., Narmuratova M.Kh., Serikbayeva A.D. (2018) Tipologiya verbluzhego moloka razlichnyh regionov Kazakhstana [Typology of camel milk in various regions of Kazakhstan]. Vestnik KazNU, Seriya biologicheskaya, vol. 74, no. 1, pp. 123-138.
10. Baimukanov D.A. (2009) Selekciya verbludov porody kazakhskiy baktrian I metody ih sovershenstvovaniya [Selection of Kazakh Bactrian camels and methods for their improvement]. Almaty: Bastau, pp. 280.
11. Gonzalez-Recio O, Coffey MP, Pryce JE. (2014) On the value of the phenotypes in the genomic era. Journal of Dairy Science., vol. 97, no. 12, 7905-15. doi: 10.3168/jds.2014-8125.
12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422876/.
13. Rijnkels, M. (2002) Multi specie comparison of the casein gene loci and evolution of casein gene family. J. Mamm. Gland Biol, no. 7, pp. 327–345.
14. Kawasaki K., Lafont A. G., Sire J. Y. (2011) The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol, vol. 28, pp. 2053–2061.
15. Pauciullo A, Shuiep E.T., Ogah M.D., Cosenza G., Di Stasio L., Erhardt G. (2019) Casein Gene Cluster in Camelids: Comparative Genome Analysis and New Findings on Haplotype Variability and Physical Mapping. Front. Genet., vol. 10, no. 748. doi: 10.3389/fgene.2019.00748.
16. Pauciullo A., Shuiep E.S., Cosenza G., Ramunno L., Erhardt G. (2013) Molecular characterization and genetic variability at -casein gene (CSN3) in camels. Gene, vol. 513, pp. 22-30.
17. Pauciullo et al. (2014) The β-casein in camels: Molecular characterization of the CSN2 gene, promoter analysis and genetic variability. Gene, vol. 547, no. 1, pp. 159-168.
18. Shuiep E., Giambra I.J., El Zubeir I.E., Erhardt G. (2013) Biochemical and molecular characterization of polymorphisms of α s1-casein in Sudanese camel (Camelus dromedarius) milk. Int. Dairy J., vol. 28, no. 2, pp. 88–93.
19. Pauciullo A., Erhardt G. (2015) Molecular characterization of the llamas (Lama glama) casein cluster genes transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and regulatory regions. PloS one, vol. 10, no. 4, doi: 10.1371/journal. pone.0124963.
20. Saadaoui B., Bianchi L., Henry C., Miranda G., Martin P., Cebo C. (2014) Combining proteomic tools to characterize the protein fraction of llama (Lama glama) milk. Electrophoresis, vol. 35, pp. 1406–1418.
21. Erhardt G., Gu M., Wagner H., Di Stasio L., Pauciullo A. (2017) Vicugna pacos αs1-casein: identification of new polymorphisms at the CSN1S1 gene. Proceedings of the 7th European Symposium on South American Camelids and 3rd European Meeting on Fibre Animals, Italy: Assisi, 36., pp. 12–17.
22. Kappeler S.R., Farah Z., Puhan Z. (2003) 5′-Flanking regions of camel milk genes are highly similar to homologue regions of other species and can be divided into two distinct groups. J. Dairy Sci., vol. 86, pp. 498–508.
23. Hinz K., O'Connor P.M., Huppertz T., Ross R.P., Kelly A.L. (2012) Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. J. Dairy Res., vol. 79, pp. 185–191.
24. Yelubayeva M. E. , Buralkhiyev B. A. , Tyshchenko V. I. , Terletskiy V. P. , Ussenbekov Y. S. (2018) Results of Camelus dromedarius and Camelus bactrianus Genotyping by Alpha-S1-Casein, Kappa-Casein Loci, and DNA Fingerprinting. Cytology and Genetics., vol. 52, pp. 179-185.
25. https://docplayer.ru/63720103-Instrukciya-dnk-sorb-s-m.html
26. Bekmanov B.O., Amirgaliyeva A.S., Musaeva A.S., Orazymbetova Z.S., Dossybayev K.Zh., Khusayinova E.M., Zhapbasov R.Zh., Zhomartov A.M., Tulekey M.D. (2015) Molekulyarno-geneticheskiy analiz ovec Edilbayskoy porody [Molecular genetic analysis of sheep of the Edilbay breed]. Izvestiya Nacionalnoy akademii nauk Respubliki Kazakhstan, no. 3, pp. 28-33.
27. Reiner A.P. et al. (2009) Common coding variants of the HNF1A gene are associated with multiple cardiovascular risk phenotypes in community-based samples of younger and older European–American adults: the coronary artery risk development in young adults study and the cardiovascular health study. Circ. Cardiovasc. Genet., vol. 2, pp. 244–254.
28. Mendel D.B., Crabtree G.R. (1991) HNF- 1, a member of a novel class of dimerizing homeodomain proteins. J. Biol. Chem., vol. 266, pp. 677–680.
29. Dunn C.A., Medstrand P., Mager D.L. (2003) An endogenous retroviral long terminal repeat is the dominant promoter for human β1,3-galactosyltransferase 5 in the colon. PNAS, vol. 100, pp. 12841–12846.
30. McBryan J., Howlin J., Kenny P.A., Shioda T., Martin F. (2007) ERalpha-CITED1 coregulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene, vol. 26, pp. 6406–6419.
31. Schild T.A., Geldermann H. (1996) Variants within the 5'-flanking regions of bovine milk-protein-encoding genes. III. Genes encoding the Ca-sensitive caseins αs1, αs2 and β. Theor. Appl. Genet., vol. 93, pp. 887–893.
32. Othman et. al. (2016) Genetic variations in two casein genes among Maghrabi camels reared in Egypt. Biosciences Biotechnology research Asia, vol. 13, no. 1, pp. 473-480.