CHARACTERISTICS OF MIRNA INTERACTION WITH 5’UTR, CDS, 3’UTR MRNA CANDIDATE GENES OF METABOLIC SYNDROME DISEASE

Authors

  • S. А. Atambayeva
  • R. Е. Niyazova
  • A. Т. Ivashchenko
  • O. Y. Yurikova
  • D. D. Mukushkina

DOI:

https://doi.org/10.26577/eb-2019-1-1385
        54 26

Abstract

Studying of the pathogenesis of metabolic syndrome is one of the most topical because of the widespread of this pathology. The study of genetic nature of cardiovascular diseases is one of the most promising areas of molecular medicine worldwide. Identification of a group of individual genetic markers allows early diagnosis and optimization of primary and secondary prevention of metabolic syndrome. Therefore, the process of biomarkers discovery should improve the therapy and assessment of the risk of cardiovascular disease. The search for effective markers is the subject of ongoing research. The miRNAs interaction with mRNAs of candidate genes were predicted using the MirTarget program. The genes responsible for the development of metabolic syndrome, regulated by miRNAs were selected by searching in the PubMed database. ADRA2A and SCAP genes are regulated by 12 and 15 miRNAs through 5'UTR with the highest binding energy is -144 kJ/mole and -151 kJ/mole, respectively. AR, CEBPA, IGFBP2, KL and SIRT1 genes are regulated through CDS by 7, 19, 11, 13 and 6 miRNAs, with the highest binding energy is -134 kJ / mole, -142 kJ/mole, -140 kJ/mole, -142 kJ/mole and -138 kJ/mole, respectively. Clusters of miRNA binding sites with overlapping nucleotide sequences were detected in mRNA of several genes. Several associations of miRNA and genes are proposed as biomarkers for developing methods for diagnosing the metabolic syndrome.

Key words: miRNA, mRNA, metabolic syndrome, candidate genes.

References

1 Lupton SJ., Chiu CL., Lind JM. A hypertension gene: are we there yet? // Twin Res Hum Genet. -2011. - Vol. 14, No.4. – P.295-304. doi: 10.1375/twin.14.4.295.

2 Stančáková A., Laakso M. Genetics of metabolic syndrome // Rev Endocr Metab Disord. – 2014. - Vol. 15, No.4. – P.243-252. doi: 10.1007/s11154-014-9293-9.

3 Aleksandrova K., Boeing H., Jenab M., et al. Metabolic syndrome and risks of colon and rectal cancer: the European prospective investigation into cancer and nutrition study // Cancer Prev. Res. - 2011. - Vol. 4. - P. 1873–1883.

4 Ambler SK., Brown RD. Genetic determinants of blood pressure regulation // J Cardiovasc Nurs. – 1999. - Vol. 13, No.4. – P.59-77.

5 Bochud M., Bovet P., Burnier M., Eap CB. CYP3A5 and ABCB1 genes and hypertension //. Pharmacogenomics. – 2009. - Vol. 10, No.3. – P.477-487. doi: 10.2217/14622416.10.3.477.

6 Gatti RR., Santos PS., Sena AA., Marangoni K., Araújo MA., Goulart LR. The interaction of AGT and NOS3 gene polymorphisms with conventional risk factors increases predisposition to hypertension // J Renin Angiotensin Aldosterone Syst. – 2013. - Vol. 14, No.4. – P.360-368. doi: 10.1177/1470320312452027.

7 Chen K., Fu C., Chen C., et al Role of GRK4 in the regulation of arterial AT1 receptor in hypertension // Hypertension. – 2014. - Vol. 63, No.2. – P.289-296. doi: 10.1161/HYPERTENSIONAHA.113.01766.

8 Vargas T., Moreno-Rubio J., Herranz J. Genes associated with metabolic syndrome predict disease-free survival in stage II colorectal cancer patients. A novel link between metabolic dysregulation and colorectal cancer // Mol Oncol. – 2014. - Vol. 8, No.8. – P.1469-1481. doi: 10.1016/j.molonc.2014.05.015.

9 Hagiwara S., Kantharidis P., Cooper ME. MicroRNA as biomarkers and regulator of cardiovascular development and disease // Curr Pharm Des. – 2014. - Vol. 20, No.14. – P.2347-2370.

10 Yuan LQ., de Jesus Perez V., Liao XB., Król M., Yeh CH. MicroRNA and Cardiovascular Disease 2016 // Biomed Res Int. – 2017. - Vol. 2017. – P.3780513. doi: 10.1155/2015/734380.

11 Bátkai S., Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets // Curr Hypertens Rep. – 2012. - Vol. 14, No.1. – P.79-87. doi: 10.1007/s11906-011-0235-6. 12 Zhongguo Zhong Yao Za Zhi. MicroRNA and hypertension // Article in Chinese. – 2014. - Vol. 39, No.3. – P.397-401;

13 Meloche J., Paulin R., Provencher S., Bonnet S. Therapeutic Potential of microRNA Modulation in Pulmonary Arterial Hypertension // Curr Vasc Pharmacol. – 2015. - Vol. 13, No.3. – P.331-340.

14 Zhou G., Chen T., Raj JU. MicroRNAs in pulmonary arterial hypertension // Am J Respir Cell Mol Biol. – 2015. - Vol. - 52, No.2. – P.139-151. doi: 10.1165/rcmb.2014-0166TR.

15 Synetos A., Toutouzas K., Stathogiannis K., Latsios G., Tsiamis E., Tousoulis D., Stefanadis C. MicroRNAs in arterial hypertension // Curr Top Med Chem. – 2013. - Vol. 13, No.13. – P.1527-1532.

16 Boucherat O., Potus F., Bonnet S. microRNA and Pulmonary Hypertension // Adv Exp Med Biol. – 2015. - Vol. 888. – P.237-252. doi: 10.1007/978-3-319-22671-2_12.

17 Bienertova-Vasku J., Novak J., Vasku A. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment // J Am Soc Hypertens. – 2015. - Vol. 9, No.3. - P.221-234. doi: 10.1016/j.jash.2014.12.011.

18 Lee A., McLean D., Choi J., Kang H., Chang W., Kim J. Therapeutic implications of microRNAs in pulmonary arterial hypertension // BMB Rep. – 2014. - Vol. 47, No.6. - P.311-317.

19 Karolina DS., Tavintharan S., Armugam A., et al Circulating miRNA profiles in patients with metabolic syndrome // J Clin Endocrinol Metab. – 2012. - Vol. 97, No.12 - P.2271-2276. doi: 10.1210/jc.2012-1996.

20 Price NL., Ramírez CM., Fernández-Hernando C. Relevance of microRNA in metabolic diseases // Crit Rev Clin Lab Sci. – 2014. - Vol. 51, No.6. - P.305-320. doi: 10.3109/10408363.2014.937522.

21 Ramírez CM., Goedeke L., Fernández-Hernando C. "Micromanaging" metabolic syndrome // Cell Cycle. – 2011. - Vol. 10, No.19. - P.3249-3252. doi: 10.4161/cc.10.19.17558.

22 Londin E., Lohera P., Telonisa A.G., Quanna K. et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate and tissue-specific microRNAs // PNAS USA. – 2015. – Vol.112. – P.1106-1115. doi: 10.1073/pnas.1420955112.

23 Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y., Alybayeva A., Baskakov K. Prediction of miRNA binding sites in mRNA // Bioinformation. – 2016. - Vol.12. – P.237-240.

24 Kool E.T. Hydrogen bonding, base stacking, and steric effects in DNA replication // Annual Review of Biophysics and Biomolecular Structure. – 2001. - Vol.30. P.1–22. doi:10.1146/annurev.biophys.30.1.1.

25 Leontis N.B., Stombaugh J., Westhof E. The non-Watson- Crick base pairs and their associated isostericity matrices // Nucleic Acids Research. – 2002. - Vol.30. P.3497–3531.

References

1. Aleksandrova K., Boeing H., Jenab M., et al. (2011) Metabolic syndrome and risks of colon and rectal cancer: the European prospective investigation into cancer and nutrition study. Cancer Prev. Res., vol. 4, р. 1873–1883.

2. Ambler SK., Brown RD. (1999) Genetic determinants of blood pressure regulation. J Cardiovasc Nurs., vol. 13(4), р.59-77.

3. Bátkai S., Thum T. (2012) MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep., vol. 14(1), р.79-87. doi: 10.1007/s11906-011-0235-6.

4. Bienertova-Vasku J., Novak J., Vasku A. (2015) MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens., vol. 9(3), р.221-234. doi: 10.1016/j.jash.2014.12.011.

5. Bochud M., Bovet P., Burnier M., Eap CB. CYP3A5 and ABCB1 genes and hypertension (2009) Pharmacogenomics, vol. 10(3), р.477-487. doi: 10.2217/14622416.10.3.477.

6. Boucherat O., Potus F., Bonnet S. (2015) microRNA and Pulmonary Hypertension. Adv Exp Med Biol., vol. 888, р.237-252. doi: 10.1007/978-3-319-22671-2_12.

7. Chen K., Fu C., Chen C., et al. (2014) Role of GRK4 in the regulation of arterial AT1 receptor in hypertension Hypertension, vol. 63(2), р.289-296. doi: 10.1161/HYPERTENSIONAHA.113.01766.

8. Gatti RR., Santos PS., Sena AA., Marangoni K., Araújo MA., Goulart LR. (2013) The interaction of AGT and NOS3 gene polymorphisms with conventional risk factors increases predisposition to hypertension. J Renin Angiotensin Aldosterone Syst., vol. 14(4), р.360-368. doi: 10.1177/1470320312452027.

9. Hagiwara S., Kantharidis P., Cooper ME. (2014) MicroRNA as biomarkers and regulator of cardiovascular development and disease. Curr Pharm Des., vol. 20(14), р.2347-2370.

10. Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y., Alybayeva A., Baskakov K. (2016) Prediction of miRNA binding sites in mRNA. Bioinformation., vol.12, p.237-240.

11. Karolina DS., Tavintharan S., Armugam A., et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab., vol. 97(12), р.2271-2276. doi: 10.1210/jc.2012-1996.

12. Kool E.T. (2001) Hydrogen bonding, base stacking, and steric effects in DNA replication. Annual Review of Biophysics and Biomolecular Structure., vol.30, p.1–22. doi:10.1146/annurev.biophys.30.1.1.

13. Lee A., McLean D., Choi J., Kang H., Chang W., Kim J. (2014) Therapeutic implications of microRNAs in pulmonary arterial hypertension. BMB Rep., vol. 47(6), p.311-317.

14. Leontis N.B., Stombaugh J., Westhof E. (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Research., vol.30, p.3497–3531.

15. Londin E., Lohera P., Telonisa A.G., Quanna K. et al. (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate and tissue-specific microRNAs. PNAS USA., vol.112, p.1106-1115. doi: 10.1073/pnas.1420955112. 16. Lupton SJ., Chiu CL., Lind JM. (2011) A hypertension gene: are we there yet? Twin Res Hum Genet., vol. 14(4), p.295-304. doi: 10.1375/twin.14.4.295.

17. Meloche J., Paulin R., Provencher S., Bonnet S. (2015) Therapeutic Potential of microRNA Modulation in Pulmonary Arterial Hypertension. Curr Vasc Pharmacol., vol. 13(3), p.331-340.

18. Price NL., Ramírez CM., Fernández-Hernando C. (2014) Relevance of microRNA in metabolic diseases. Crit Rev Clin Lab Sci., vol. 51(6), p.305-320. doi: 10.3109/10408363.2014.937522.

19. Ramírez CM., Goedeke L., Fernández-Hernando C. (2011) "Micromanaging" metabolic syndrome. Cell Cycle., vol. 10(19), p.3249-3252. doi: 10.4161/cc.10.19.17558.

20. Stančáková A., Laakso M. (2014) Genetics of metabolic syndrome. Rev Endocr Metab Disord., vol. 15(4), p.243-252. doi: 10.1007/s11154-014-9293-9.

21. Synetos A., Toutouzas K., Stathogiannis K., Latsios G., Tsiamis E., Tousoulis D., Stefanadis C. (2013) MicroRNAs in arterial hypertension. Curr Top Med Chem. vol. 13(13), p.1527-1532.

22. Vargas T., Moreno-Rubio J., Herranz J. (2014) Genes associated with metabolic syndrome predict disease-free survival in stage II colorectal cancer patients. A novel link between metabolic dysregulation and colorectal cancer. Mol Oncol., vol. 8(8), p.1469-1481. doi: 10.1016/j.molonc.2014.05.015.

23. Yuan LQ., de Jesus Perez V., Liao XB., Król M., Yeh CH. (2017) MicroRNA and Cardiovascular Disease 2016. Biomed Res Int., vol. 2017, p.3780513. doi: 10.1155/2015/734380. 24. Zhongguo Zhong Yao Za Zhi. (2014) MicroRNA and hypertension. Article in Chinese, vol. 39(3), p.397-401;

25. Zhou G., Chen T., Raj JU. (2015) MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. vol. - 52(2), p.139-151. doi: 10.1165/rcmb.2014-0166TR

Downloads

Published

2019-05-04

How to Cite

Atambayeva S. А., Niyazova R. Е., Ivashchenko A. Т., Yurikova, O. Y., & Mukushkina, D. D. (2019). CHARACTERISTICS OF MIRNA INTERACTION WITH 5’UTR, CDS, 3’UTR MRNA CANDIDATE GENES OF METABOLIC SYNDROME DISEASE. Experimental Biology, 78(1), 100–113. https://doi.org/10.26577/eb-2019-1-1385

Issue

Section

МOLECULAR BIOLOGY AND GENETICS