miR-1322 binding sites in mRNAs of genes involved in the development of neurodegenerative and oncological diseases

Authors

  • O. Yurikova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Sh. Atambaeva Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, the Republic of Kazakhstan, Almaty
  • A. Bolshoy University of Haifa, Israel, Haifa
  • A. Ivashchenko Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, the Republic of Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/EB-2017-4-1303
        80 54

Keywords:

miR-1322, mRNA, orthologous genes, socially significant diseases

Abstract

Existence of miRNA binding sites in 3'-UTR, 5'-UTR and CDS regions of the mRNA of animal genes is confirmed. The efficiency of miRNA-induced repression increases with the number of sites. The binding of miRNA can be significant if the gene contains repeats of the site sequences in the coding region. It is shown that miR-1322 has polysites in CDS region of mRNAs of dozens of human genes. Experimental verification of functionality of the large number of sites is time-consuming and labor intensive. One of the ways to predict miRNA binding sites is to check the existence of these sites in mRNA of orthologous genes and to analyze their divergence during evolution. The analysis of conservation of miR-1322 polysites in CDS of mRNAs of ATN1, BCL6B, HTT, MAGI1, MLLT3, MN1, THAP11, TBP human genes and their orthologues was carried out. The studied genes are involved in development of neurodegenerative and oncological diseases. The obtained results show that polysites for binding miR-1322 are found in mRNAs of orthologous genes of many animal species. In the process of evolution, the number of binding sites changes, that indicates species dependence of efficiency of regulation of these genes expression by miR-1322. In addition to general contribution to the study of pathogenesis mechanisms caused by participation of ATN1, BCL6B, HTT, MAGI1, MLLT3, MN1, THAP11 and TBP genes our analysis allows to propose an adequate experimental animal model for further study of regulation of described genes expression by miR-1322.

References

1 Atambayeva S, Niyazova R, Ivashchenko A, Pyrkova A, Pinsky I, Akimniyazova A, Labeit S. (2017) The Binding sites of miR-619-5p in the mRNAs of human and orthologous genes, BMC Genomics, vol. 18, no. 428. DOI:10.1186/s12864-017-3811-6.
2 Bartel DP. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol. 116, no. 2, pp. 281-297. DOI: 10.1016/S0092-8674(04)00045-5.
3 Berillo OA, Issabekova AS, Régnier M, Ivashchenko AT. (2013) Characteristics of binding sites of intergenic, intronic and exonic miRNAs with mRNAs of oncogenes coding intronic miRNAs, African Journal of Biotechnology, vol. 12, no. 11, pp. 1016-1024
4 Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers, MD et al. (2012). An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model, Blood, vol. 119, no. 19, pp. 4512–4523. DOI:10.1182/blood-2010-04-281428
5 Bobori C. (2014) Molecular Genetics of Huntington’s Disease, Adv Exp Med Biol, vol. 822, pp. 59-65. DOI: 10.1007/978-3-319-08927-0_9
6 Dejosez M, Krumenacker JS., Zitur LJ, Passeri M, Chu LF, Songyang, Z et.al. (2008). Ronin is essential for embryogenesis and the pluripotency of mouse ES cells, Cell, vol. 133, no. 7, pp. 1162–1174. DOI: 10.1016/j.cell.2008.05.047.
7 Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis, BMC Bioinformatics, no. 8, p. 69. DOI:10.1186/1471-2105-8-69
8 Grosveld GC. (2007) MN1, a novel player in human AML, Blood Cells Mol Dis, vol. 39, no. 3, pp. 336-9. DOI:10.1016/j.bcmd.2007.06.009.
9 Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP, Cell, vol. 141, no. 1, pp. 129-41. DOI:10.1016/j.cell.2010.03.009
10 Harjes P, Wanker EE. (2003) The hunt for huntingtin function: interaction partners tell many different stories, Trends in Biochem Sci, vol. 28, no. 8, pp. 425 – 433. DOI: 10.1016/S0968-0004(03)00168-3
11 Hausser J, Syed AP, Bilen B, Zavolan M. (2013) Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation, Genome Res, vol. 23, no. 4, pp.604–615. DOI: 10.1101/gr.139758.112.
12 http://www.ncbi.nlm.nih.gov
13 http://mirbase.org
14 Hu S, Cao B, Zhang M, et al. (2015) Epigenetic silencing BCL6B induced colorectal cancer proliferation and metastasis by inhibiting P53 signaling. Am J Cancer Res, vol. 5, no. 2, pp. 651-662.
15 Ivashchenko A, Berillo O, Pyrkova A, Niyazova R. (2014) Binding Sites of miR-1273 Family on the mRNA of Target Genes. BioMed Res Int, vol. 2014, p. 620530. DOI: 10.1155/2014/620530.
16 Kong XZ, Yin RH, Ning HM, Zheng WW, Dong XM, Yang Y, Xu FF, Li JJ, Zhan YQ, Yu M, Ge CH, Zhang JH, Chen H, Li CY, Yang XM. (2014) Effects of THAP11 on erythroid differentiation and megakaryocytic differentiation of K562 cells, PLoS One, vol. 9, no. 3, e91557. DOI:10.1371/journal.pone.0091557
17 Lytle JR., Yario T.A., Steitz JA. (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR, Proc. Natl. Acad. Sci USA, vol. 104, no. 23, pp. .9667–9672. DOI:10.1073/pnas.0703820104.
18 Matilla-Dueñas A. (2012) Machado-Joseph Disease and other Rare Spinocerebellar Ataxias. In: Ahmad S.I. (eds) Neurodegenerative Diseases, Advances in Experimental Medicine and Biology, vol. 724, pp. 172-188. DOI: 10.1007/978-1-4614-0653-2_14
19 Niyazova R., Berillo O, Atambayeva S, Pyrkova A, Alybayeva A, Ivashchenko A. (2015). miR-1322 binding sites in paralogous and orthologous genes, BioMed Res Int, vol.2015, no. 962637. DOI: 10.1155/2015/962637
20 Pardee TS. (2012) Overexpression of MN1 confers resistance to chemotherapy, accelerates leukemia onset, and suppresses p53 and Bim induction, PLoS One, vol.7, no.8, e43185. DOI:10.1371/journal.pone.0043185
21 Parker JB, Palchaudhuri S, Yin H, Wei J, Chakravarti D. (2012) A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function, Mol Cell Biol, vol. 32, no. 9, pp. 1654-70. DOI: 10.1128/MCB.06033-11.
22 Pina C, May G, Soneji S, Hong D, Enver T. (2008) MLLT3 regulates early human erythroid and megakaryocytic cell fate, Cell Stem Cell, vol. 2, no. 3, pp. 264-73. DOI: 10.1016/j.stem.2008.01.013.
23 Schnall-Levin M, Zhao Y, Perrimon N, Berger B. (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3UTRs, Proc Natl Acad Sci USA, vol. 107, no. 36, pp. 15751–6. DOI:10.1073/pnas.1006172107
24 Schnall-Levin M, Rissland OS, Johnston KW (2011) Unusually effective miRNA targeting within repeat-rich coding regions of mammalian mRNAs, Genome Res, vol. 21, no. 9, pp. 1395–1403. DOI: 10.1101/gr.121210.111
25 Thion MS, Tézenas du Montcel S, Golmard J-L, et al. (2016) CAG repeat size in Huntingtin alleles is associated with cancer prognosis, European Journal of Human Genetics, vol. 24, no .9, pp. 1310-1315. DOI:10.1038/ejhg.2016.13
26 Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation, Nature, vol. 455 pp.1124–1128. DOI:10.1038/nature07299
27 Wang J, Dong L, Xu L, Chu ES, Chen Y, Shen J, et al. (2014) B cell CLL/lymphoma 6 member B inhibits hepatocellular carcinoma metastases in vitro and in mice, Cancer Lett, vol. 355, no. 2, pp. 192–200. DOI:10.1016/j.canlet.2014.08.025.
28 Wang W, Huang P, Wu P, et al. (2015) BCL6B expression in hepatocellular carcinoma and its efficacy in the inhibition of liver damage and fibrogenesis, Oncotarget, vol. 6, no. 24, pp. 20252-20265. DOI: 10.18632/oncotarget.3857
29 Zhang G, Wang Z. (2011) MAGI1 inhibits cancer cell migration and invasion of hepatocellular carcinoma via regulating PTEN, Zhong Nan Da Xue Xue Bao Yi Xue Ban, vol. 36, no. 5, pp. 381-385 DOI:10.3969/j.issn.1672-7347.2011.05.002
30 Zhang G, Liu T, Wang Z. (2012) Downregulation of MAGI1 associates with poor prognosis of hepatocellular carcinoma. J Invest Surg, vol. 25, no. 2, pp. 93-99. DOI: 10.3109/08941939.2011.606875.

References

1 Atambayeva S, Niyazova R, Ivashchenko A, Pyrkova A, Pinsky I, Akimniyazova A, Labeit S. The Binding sites of miR-619-5p in the mRNAs of human and orthologous genes// BMC Genomics.- 2017.- Vol. 18, No. 428. DOI:10.1186/s12864-017-3811-6.
2 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. – 2004. -Vol. 116, No. 2. - P. 281-297. DOI: 10.1016/S0092-8674(04)00045-5.
3 Berillo OA, Issabekova AS, Régnier M, Ivashchenko AT. Characteristics of binding sites of intergenic, intronic and exonic miRNAs with mRNAs of oncogenes coding intronic miRNAs // African Journal of Biotechnology. -2013. - Vol.12, No. 11. -P. 1016-1024
4 Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers, MD et al. An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model // Blood. – 2012.- Vol.119, No. 19. -P. 4512–4523. DOI:10.1182/blood-2010-04-281428
5 Bobori C. Molecular Genetics of Huntington’s Disease // Adv Exp Med Biol. – 2014. - Vol. 822. - P. 59-65. DOI: 10.1007/978-3-319-08927-0_9
6 Dejosez M, Krumenacker JS., Zitur LJ, Passeri M, Chu LF, Songyang, Z et.al. Ronin is essential for embryogenesis and the pluripotency of mouse ES cells // Cell. - 2008. - Vol. 133, No 7. - P. 1162–1174. DOI: 10.1016/j.cell.2008.05.047.
7 Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis // BMC Bioinformatics. – 2007. - No.8. - P. 69. DOI:10.1186/1471-2105-8-69
8 Grosveld GC. MN1, a novel player in human AML // Blood Cells Mol Dis. – 2007. - Vol. 39, No. 3. -P. 336-339. DOI:10.1016/j.bcmd.2007.06.009.
9 Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP // Cell. – 2010. - Vol. 141, No. 1. - P.129-41. DOI:10.1016/j.cell.2010.03.009
10 Harjes P, Wanker EE. (2003) The hunt for huntingtin function: interaction partners tell many different stories // Trends in Biochem Sci. - 2003. - Vol. 28, No. 8. - P. 425 – 433. DOI: 10.1016/S0968-0004(03)00168-3
11 Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation // Genome Res. - 2013. - Vol. 23, No. 4. - P. 604–615. DOI: 10.1101/gr.139758.112.
12 http://www.ncbi.nlm.nih.gov
13 http://mirbase.org
14 Hu S, Cao B, Zhang M, et al. Epigenetic silencing BCL6B induced colorectal cancer proliferation and metastasis by inhibiting P53 signaling // Am J Cancer Res. – 2015. - Vol. 5, No. 2, P. 651-662.
15 Ivashchenko A, Berillo O, Pyrkova A, Niyazova R. Binding Sites of miR-1273 Family on the mRNA of Target Genes // BioMed Res Int. – 2014. - Vol. 2014, 620530. DOI: 10.1155/2014/620530.
16 Kong XZ, Yin RH, Ning HM, Zheng WW, Dong XM, Yang Y, Xu FF, Li JJ, Zhan YQ, Yu M, Ge CH, Zhang JH, Chen H, Li CY, Yang XM. Effects of THAP11 on erythroid differentiation and megakaryocytic differentiation of K562 cells // PLoS One. – 2014. - Vol. 9, No. 3. – P. e91557. DOI:10.1371/journal.pone.0091557
17 Lytle JR., Yario T.A., Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR // Proc. Natl. Acad. Sci USA. – 2007. - Vol. 104, No. 23. – P. 9667–9672. DOI:10.1073/pnas.0703820104.
18 Matilla-Dueñas A. Machado-Joseph Disease and other Rare Spinocerebellar Ataxias. In: Ahmad S.I. (eds) Neurodegenerative Diseases // Advances in Experimental Medicine and Biology. – 2012. - Vol. 724. - P. 172-188. DOI: 10.1007/978-1-4614-0653-2_14
19 Niyazova R, Berillo, O, Atambayeva S., Pyrkova A., Alybayeva A., Ivashchenko, A. miR-1322 binding sites in paralogous and orthologous genes// BioMed Res Int. – 2015. - Vol. 2015, No. 962637. DOI: 10.1155/2015/962637
20 Pardee TS. Overexpression of MN1 confers resistance to chemotherapy, accelerates leukemia onset, and suppresses p53 and Bim induction // PLoS One. – 2012. - Vol. 7, No. 8, e43185. DOI:10.1371/journal.pone.0043185
21 Parker JB, Palchaudhuri S, Yin H, Wei J, Chakravarti D. A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function // Mol Cell Biol. – 2012. - Vol. 32, No 9. - P. 1654-70. DOI: 10.1128/MCB.06033-11.
22 Pina C, May G, Soneji S, Hong D, Enver T. MLLT3 regulates early human erythroid and megakaryocytic cell fate // Cell Stem Cell. – 2008. - Vol. 2, No. 3. - P. 264-73. DOI: 10.1016/j.stem.2008.01.013.
23 Schnall-Levin M, Zhao Y, Perrimon N, Berger B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3UTRs // Proc Natl Acad Sci USA. – 2010. - Vol. 107, No. 36. - P. 15751–6. DOI:10.1073/pnas.1006172107
24 Schnall-Levin M, Rissland OS, Johnston KW. Unusually effective miRNA targeting within repeat-rich coding regions of mammalian mRNAs // Genome Res. – 2011. - Vol. 21, No. 9. - P. 1395–1403. DOI: 10.1101/gr.121210.111
25 Thion MS, Tézenas du Montcel S, Golmard J-L, et al. CAG repeat size in Huntingtin alleles is associated with cancer prognosis // European Journal of Human Genetics. – 2016. – Vol. 24, No. 9. – P.1310-1315. Doi:10.1038/ejhg.2016.13
26 Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation // Nature. – 2008. - Vol. 455. - P.1124–1128. DOI:10.1038/nature07299
27 Wang J, Dong L, Xu L, Chu ES, Chen Y, Shen J, et al. B cell CLL/lymphoma 6 member B inhibits hepatocellular carcinoma metastases in vitro and in mice // Cancer Lett. – 2014. - Vol. 355, No. 2. - P.192–200. DOI:10.1016/j.canlet.2014.08.025.
28 Wang W, Huang P, Wu P, et al. BCL6B expression in hepatocellular carcinoma and its efficacy in the inhibition of liver damage and fibrogenesis // Oncotarget. – 2015. – Vol. 6, No. 24. – P.20252-20265. DOI: 10.18632/oncotarget.3857
29 Zhang G, Wang Z. MAGI1 inhibits cancer cell migration and invasion of hepatocellular carcinoma via regulating PTEN // Zhong Nan Da Xue Xue Bao Yi Xue Ban. – 2011. - Vol. 36, No. 5. - P. 381-385 DOI:10.3969/j.issn.1672-7347.2011.05.002
30 Zhang G, Liu T, Wang Z. Downregulation of MAGI1 associates with poor prognosis of hepatocellular carcinoma // J Invest Surg. – 2012. - Vol. 25, No. 2. - P. 93-9. DOI: 10.3109/08941939.2011.606875.

Downloads

How to Cite

Yurikova, O., Atambaeva, S., Bolshoy, A., & Ivashchenko, A. (2018). miR-1322 binding sites in mRNAs of genes involved in the development of neurodegenerative and oncological diseases. Experimental Biology, 73(4), 67–80. https://doi.org/10.26577/EB-2017-4-1303

Issue

Section

МOLECULAR BIOLOGY AND GENETICS