Physicochemical properties of bacterial cellulose formed by the novel Komagataeibacter xylinus C-3 strain on an optimized nutrient medium
Keywords:
bacterial cellulose, gel film, Komagataeibacter xylinusAbstract
Bacterial cellulose (BC) - a natural polymer, characterized by high adsorption capacity, biocompatibility and mechanical strength. Unlike plant cellulose, BC is a chemically pure extracellular product. Due to its unique properties BC is a promising material for medicine.
Studies on development and application of BC in field of medical materials science are conducted in many countries. However, the obtaining of BC in Kazakhstan has not been established yet, and there are no strains in collections for its production on an industrial scale.
The purpose of present study was to isolate the bacterial cellulose producer and to select optimal conditions for its growth and BC gel film biosynthesis under surface cultivation conditions.
Bacterial cellulose-producing strains were isolated from a mixed culture of Kombucha, as well as apple cider vinegar of «El-iksir» firm on S. Hestrin, M. Shramm media. The optimization factors of nutrient medium were the upper and lower concentration levels of glucose, beer wort and ethanol. The productivity of strains was assessed by measuring the BC mass, which was previously dried at 80 °C. The culture-morphological properties of isolated strain were studied using a BIOLAM laboratory microscope. For biochemical identification of strains, a Vitek bacterial analyzer (BioMerieux, France) with standardized API 50 CH and API 20 E test systems with Apiweb identification software was used. The strain species and purity on extraneous contamination was determined by analyzing the nucleotide sequence of 16S rRNA gene. A study of films structure was studied on a scanning electron microscope. The mechanical strength of BC was determined on an «Instron» testing machine.
A new producer of bacterial cellulose Komagataeibacter xylinus C-3 was isolated, identified and genotyped. The parameters of growth and productivity of two collection strains and new Komagataeibacter xylinus C-3 strain on media containing different carbon sources and nutritional supplements under static cultivation conditions were determined. The conditions for surface cultivation of strain, which ensure the maximum level of BC biosynthesis, were selected, and a method for purifiying the film was developed. The optimum nutrient medium for BC gel film formation by the Komagataeibacter xylinus C-3 strain under static culture conditions is the HS medium with 1% glucose, 0.5% ethanol, and 0.1% addition of beer wort. The maximum yield of BC - 7.11 g/l was achieved when the producer was cultivated for 5 days at 30°C. The new strain is more efficient than the collection strains of Gluconoacetobacter xylinus B-11240 and Gluconoacetobacter hansenii B-6756, recommended for industrial production of cellulose. The strainʼs Gen Bank accession number is KU598766.
Electron microscopic examination of obtained gel film structural features showed that it consists of microfibrillar bands of nanoscale sizes (15-55 nm). The porous structure of gel film and a high degree of crystallinity provide an excellent mechanical strength to it (17.01 + 0.5 MPa). The film is characterized by high sorption capacity, which allows to hold 11 g of water per 1 g of dehydrated polymer.
Bacterial cellulose synthesized by Komagateibacter xylinus C-3 strain under surface culture conditions can be the basis for production of ultra-strong nanocomposite materials in biomedical and other related fields.
References
2. Backdahl H., Helenius G., Bodin A., Nannmark U., Johansson B. R., Risberg B., Gatenholm P. Mechanical properties of bacterial cellulose and interaction swith smooth muscle cells // Biomaterials, 27. – 2006. – Р. 2141-2149.
3. Bae S., Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium // Biotechnology Progress, 20. – 2004. – Р. 1366–1371.
4. Bodin A., Backdahl H., Fink H., Gustafsson L., Risberg B., Gatenholm P. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes // Biotechnol Bioeng, 97. – 2007. – Р. 425–434.
5. Cai Z., Kim J. Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility // Cellulose, 17. – 2010. – Р. 83-91.
6. Chawla P.R., Bajaj I.B., Survase A.S., Singhal R.S. Microbial cellulose: fermentative production and application // Food Technol Biotechnol, 47. – 2009. – Р. 107–124.
7. Clarridge III J. E. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases // Clinical Microbiology Reviews, 17. – 2004. – Р. 840–862.
8. Clayton R. A., Sutton G., Hinkle P. S., Bult Jr. C., Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa // International Journal of Systematic Bacteriology, 45. – 1995. – Р. 595–599.
9. Czaja W., Krystynowicz A., Bielecki S., Brown R. J. Microbial cellulose — the natural power to heal wounds // Biomaterials, 27. – 2006. – Р. 145-151.
10. Czaja W., Romanovicz D., Brown R. M. Structural investigations of microbial cellulose produced in stationary and agitated culture // Cellulose, 11. – 2004. – P. 403-411.
11. Czaja, W.K., Young, D.J., Kawecki M., Brown R.M. The future prospects of microbial cellulose in biomedical applications // Biomacromolecules, 8. – 2007. – P. 1-12.
12. Dahman Y., Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers // Journal of Nanoscience and Nanotechnology, 9. – 2009. – P. 5105–5122.
13. Guzun A.S., Stroescu M., Jinga S.I., Voicu G., Grumezescu A.M., Holban A.M. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis // Mater Sci Eng C Mater Biol Appl., 42. – 2014. – P. 280.
14. Jeong S.I., Lee S.E., Yang H., Jin Y.H., Park C.S., Park Y.S. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals // Molecular & Cellular Toxicology, 6. – 2010. – P. 373-380.
15. Klemm D., Heublein B., Fink H.P., Bohn A. Cellulose: fascinating biopolymer and sustainable raw material // J Angew Chem Int Ed, 44. – 2005. – P. 3358-3393.
16. Laçin N.T. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing // Int J Biol Macromol., 67. – 2014. – P. 22-27.
17. Lin W.C., Lien C.C., Yeh H.J., Yu C.M., Hsu S.H. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications // Carbohydr Polym, 94. – 2013. – P. 603-611.
18. Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I. S. Microbial cellulose utilization: Fundamentals and biotechnology // Microbiology and Molecular Biology Reviews, 66. – 2002. – P. 506.
19. Mikkelsen D., Flanagan B.M., Dykes G.A., Gidley M.J. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 // J Appl Microbiol, 107. – 2009. – P. 576–583.
20. Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar / G.L. Miller // Anal. Chem. – 1959. – Vol. 31. – P. 426–429.
21. Naritomi T., Kouda T., Yano H., Yoshinaga F. Effect of ethanol on bacterial cellulose production from fructose in continuous culture // J Ferment Bioeng, 85. – 1998. – P. 598–603.
22. Нетрусов А.И., Егорова М.А., Захарчук Л.М., Колотилова Н.Н. и др. Практикум по микробиологии: учебное пособие для студентов высших учебных заведений. (ред. Нетрусов А.И.). – М.: Академия. – 2005. – С. 608.
23. Nge T. T., Nogi M., Yano H., Sugiyama J. Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold // Cellulose, 17. – 2010. – P. 349-363.
24. Определитель бактерий Берджи / под ред. Дж. Хоулта, Н. Крига, П. Смита и др. – М.: Мир, 1997. – Т 1. – С. 800 .
25. Pértile R. A, Moreira S., Costa R.M., Correia A., Guardão L., Gartner F., Vilanova M., Gama M. Bacterial Cellulose: Long-Term Biocompatibility Studies // J Biomater Sci Polym Ed, 23. – 2011. – P. 231-236.
26. Ramana K.V., Tomar A., Singh L. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum // World J Microbiol Biotechnol, 16. – 2000. – P. 245–248.
27. Romanov D.P., Baklagina Yu.G., Lukasheva N.V., Khripunov A.K., Kachenko A.A., Lavrentyev V.K., Klechkovskaya V.V., Arkharova N.A., Tolmachev D.A. Investigation of Nanocomposites Based on Hydrated Calcium Phosphates and Cellulose Acetobacter xylinum // Journal Glass Physics and Chemistry, 34. – 2008. – P. 192–200.
28. Ross P., Mayer R., and Benziman M. Cellulose biosynthesis and function in bacteria // Microbiol Mol Biol Rev. – 1991. – vol. 55, no. 1, P. 35-58.
29. Ruka R.D., Simon P.G., Dean K., Altering the growth conditions of Gluconoacetobacter xylinus to maximize the yield of bacterial cellulose // CSIRO Materials Science and Engineering. – 2015. – P. 1-21.
30. Saibuatong O. A., Phisalaphong M. Novo aloe vera-bacterial cellulose composite film from biosynthesis // Carbohydrate Polymers, 79. – 2010. – P. 455-460.
31. Saska S., Barud H.S., Gaspar A.M.M., Marchetto R., Ribeiro S.J.L, Messaddeq Y. Bacterial cellulose – Hydroxyapatite Nanocomposites for Bone regeneration // International journal of biomaterials, 2. – 2011. – P. 1-7.
32. Shah N., Ul-Islam M., Khattak W.A., Park J.K. Overview of bacterial cellulose composites: a multipurpose advanced material // Carbohydr. Polym., 98. – 2013. – P. 585-598.
33. Solway D. R., Clark W. A., Levinson D. J. A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers // International Wound Journal, 8. – 2011. – P. 69-73.
34. Son H.J., Heo M.S., Kim Y.G., Lee S.J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures // Biotechnol Appl Biochem, 33. – 2001. – P. 1–5.
35. Yang X.Y., Huang C., Guo H.J., Xiong L., Luo J., Wang B., Lin X.Q., Chen X.F., Chen X.D. Bacterial Cellulose Production from the Litchi Extract by Gluconacetobacter Xylinus // Prep Biochem Biotechnol, 32. – 2014. – P. 175-176.
References
1. Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I. S., “Microbial cellulose utilization: Fundamentals and biotechnology’, Microbiology and Molecular Biology Reviews, 66 (2002): 506.
2. Shah N., Ul-Islam M., Khattak W.A., Park J.K. “Overview of bacterial cellulose composites: a multipurpose advanced material”, Carbohydr. Polym., 98 (2013): 585-598.
3. Klemm D., Heublein B., Fink H.P., Bohn A., “Cellulose: fascinating biopolymer and sustainable raw material”, J Angew Chem Int Ed, 44 (2005): 3358-3393.
4. Guzun A.S., Stroescu M., Jinga S.I., Voicu G., Grumezescu A.M., Holban A.M., “Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis”, Mater Sci Eng C Mater Biol Appl., 42 (2014): 280.
5. Yang X.Y., Huang C., Guo H.J., Xiong L., Luo J., Wang B., Lin X.Q., Chen X.F., Chen X.D., “Bacterial Cellulose Production from the Litchi Extract by Gluconacetobacter Xylinus”, Prep Biochem Biotechnol, 32 (2014): 175-176.
6. Czaja, W.K., Young, D.J., Kawecki M., Brown R.M., “The future prospects of microbial cellulose in biomedical applications”, Biomacromolecules, 8 (2007); 1-12.
7. Jeong S.I., Lee S.E., Yang H., Jin Y.H., Park C.S., Park Y.S., “Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals”, Molecular & Cellular Toxicology, 6 (2010): 373-380.
8. Andrade F.K., Moreira S.M., Domingues L., Gama F.M., “Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD”, Journal of Biomedical Materials Research Part A, 92A (2010): 9-17.
9. Dahman Y., “Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers”, Journal of Nanoscience and Nanotechnology, 9 (2009): 5105–5122.
10. Saska S., Barud H.S., Gaspar A.M.M., Marchetto R., Ribeiro S.J.L, Messaddeq Y., “Bacterial cellulose – Hydroxyapatite Nanocomposites for Bone regeneration”, International journal of biomaterials, 2 (2011): 1-7.
11. Laçin N.T., “Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing”, Int J Biol Macromol., 67 (2014): 22-27.
12. Czaja W., Krystynowicz A., Bielecki S., Brown R. J., “Microbial cellulose — the natural power to heal wounds”, Biomaterials, 27 (2006): 145-151.
13. Solway D. R., Clark W. A., Levinson D. J., “A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers”, International Wound Journal, 8 (2011): 69-73.
14. Netrusov А.I., Еgorova М.А., Zaharchuk L.М., Kolotilova N.N. et al. (2005) Practicum po microbiologii: uchebnoye posobiye dlya studentov vysshih uchebnyh zavedenyi [Practicl works on microbiology: textbook for students of higher educational institutions]. Academy, pp. 608.
15. J. Hoult, N. Krig, P. Smith et al. (1997) Opredelitel bakteriy Bergi [Bergi identificator of bacteria]. Mir, vol. 1, pp. 800].
16. Clayton R. A., Sutton G., Hinkle P. S., Bult Jr. C., Fields C., “Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa”, International Journal of Systematic Bacteriology, 45 (1995): 595–599.
17. Clarridge III J. E., “Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases”, Clinical Microbiology Reviews, 17 (2004): 840–862.
18. Cai Z., Kim J., “Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibilit”, Cellulose, 17 (2010): 83-91.
19. Miller G.L., “Use of dinitrosalicylic acid reagent for determination of reducing sugar”, Anal. Chem. , 31 (1959): 426–429.
20. Pértile R. A, Moreira S., Costa R.M., Correia A., Guardão L., Gartner F., Vilanova M., Gama M., “Bacterial Cellulose: Long-Term Biocompatibility Studies”, J Biomater Sci Polym Ed, 23 (2011): 231-236.
21. Ruka R.D., Simon P.G., Dean K., “Altering the growth conditions of Gluconoacetobacter xylinus to maximize the yield of bacterial cellulose”, CSIRO Materials Science and Engineering, (2015): 1-21.
22. Romanov D.P., Baklagina Yu.G., Lukasheva N.V., Khripunov A.K., Kachenko A.A., Lavrentyev V.K., Klechkovskaya V.V., Arkharova N.A., Tolmachev D.A., “Investigation of Nanocomposites Based on Hydrated Calcium Phosphates and Cellulose Acetobacter xylinum”, Journal Glass Physics and Chemistry, 34 (2008): 192–200.
23. Ross P., Mayer R., and Benziman M., “Cellulose biosynthesis and function in bacteria”, Microbiol Mol Biol Rev 55, no. 1, pp. (1991): 35-58.
24. Saibuatong O. A., Phisalaphong M., “Novo aloe vera-bacterial cellulose composite film from biosynthesis”, Carbohydrate Polymers, 79 (2010): 455-460.
25. Bae S., Shoda M., “Bacterial cellulose production by fed-batch fermentation in molasses medium”, Biotechnology Progress, 20 (2004): 1366–1371.
26. Czaja W., Romanovicz D., Brown R. M., “Structural investigations of microbial cellulose produced in stationary and agitated culture”, Cellulose, 11 (2004): 403-411.
27. Bodin A., Backdahl H., Fink H., Gustafsson L., Risberg B., Gatenholm P. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng, 97 (2007):425–434.
28. Chawla P.R., Bajaj I.B., Survase A.S., Singhal R.S. Microbial cellulose: fermentative production and application. Food Technol Biotechnol, 47 (2009): 107–124.
29. Mikkelsen D., Flanagan B.M., Dykes G.A., Gidley M.J. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol, 107 (2009):576–583.
30. Ramana K.V., Tomar A., Singh L. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol, 16 (2000):245–248.
31. Son H.J., Heo M.S., Kim Y.G., Lee S.J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnol Appl Biochem, 33 (2001):1–5.
32. Naritomi T., Kouda T., Yano H., Yoshinaga F. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng, 85 (1998):598–603.
33. Backdahl H., Helenius G., Bodin A., Nannmark U., Johansson B. R., Risberg B., Gatenholm P., “Mechanical properties of bacterial cellulose and interaction swith smooth muscle cells”, Biomaterials. 27 (2006): 2141-2149.
34. Nge T. T., Nogi M., Yano H., Sugiyama J., “Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold”, Cellulose, 17 (2010): 349-363.
35. Lin W.C., Lien C.C., Yeh H.J., Yu C.M., Hsu S.H., “Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications”, Carbohydr Polym, 94 (2013): P. 603-611.