Isolation and identification of new cultures of toxin-forming cyanobacteria from the Shar Nuur Lake

Authors

  • K. Bolatkhan Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • J. Kopecky Institute of Microbiology, Trebon, Czech Republic
  • K. Zh. Zhambakin Institute of biology and biotechnology of plants, Kazakhstan, Almaty
  • D. A. Los Timiryazov Institute of plant physiology, Moscow, Russia
  • M. A. Sinetova Timiryazov Institute of plant physiology, Russia, Moscow
  • N. R. Akmukhanova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. K. Sadvakasova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • B. K. Zayadan Al-Farabi Kazakh National University, Kazakhstan, Almaty
        120 44

Keywords:

cyanobacteria, bacteriologically pure culture, morphology, toxins, identification, Desertifilum sp.1 strain.

Abstract

 

Studied the species composition of algal flora of Shar Nuur Lake, located in the mountainous regions of Bayan Ulgiisk region of Mongolia. From selected water samples and algal-bacterial mats received 3 bacteriologically pure cultures of cyanobacteria from family Oscillatoriaceae and Nostocaceae.  Determined the toxicity of cyanobacteria’ selected strains according to the system of N.S. Stroganov. It was found that from cyanobacteria’ isolated strains the culture SP-O1 is defined as highly-toxic to the test-object - Daphnia. Evaluation of biological activity of toxic cyanobacteria cultures studied in relation to the test-object cell lines HeLa cancer cells showed different cytotoxic effect. In studied extracts of Desertifilum SP-O1 biomass strain the dangerous toxins were not detected. Mostly identified toxins are microcystins. Despite on the fact that according to botanical characteristics the obtained cyanobacteria SP-O1 from Shar Nuur Lake is related to the Oscillatoria genus, molecular-genetic analysis revealed its high homology to the Desertifilum genus belonging to Oscillatoriaceae family. Based on these data, SP-O1 culture was identified and designated as Desertifilum sp.1.

References

1. Carmichael W.W. The toxins of Cyanobacteria // Sci. Amer. - 1994. - №1. - P. 78–86.
2. Ballot A, Fastner J, and Wiedner C. Paralytic shellfish poisoning toxin-producing cyanobacterium Aphanizomenon gracile in northeast Germany // Appl. Environ. Microbiol. - 2010. - V. 76. - P. 1173–1180.
3. Namikoshi M., Rinehart K.L. Bioactive compounds produced by cyanobacteria // J. Industr. Microbiol. Biotechn.- 1996. - V. 17. - P. 373–384.
4. Harada K.I. Production of secondary metabolites by freshwater cyanobacteria // Chem. Pharm. Bull. - 2004. - V. 5. - P. 889–899.
5. Определитель сине-зеленых водорослей СССР // Отв. ред. Голлербах М.М. Л.: Наука. - 1951. - С. 1–14.
6. Andersen R.A. Algal Culturing Techniques // New York, NY, U.S.A. Elsevier Academic Press. - 2005. – Р. 578.
7. Темралеева А.Д., Минчева Е.В., Букин Ю.С., Андреева А.М. Современные методы выделения, культивирования и идентификации зеленых водорослей (Chlorophyta) // Кострома: Костромской печатный дом. - 2014. - 215 с.
8. Jones A.K., Muriel E., Rhodes M.E., Evans S.C. The use of antibiotics to obtain axenic cultures of algae // Brit. Phycol. J. - 1973. - V. 8, №1. - P. 185–196.
9. Day Chronictoxicity test using Daphnia magna or Daphnia pulex // - 1994. SOP №2028:https://clu-in.org/download/ert/2028-R00.pdf.
10. Волошко Л.Н., Плющ А.В., Титова Н.Н. Токсины Цианобактерий (Cyanobacteia, Cyanophyta)// Альгология.-2008.-Т.18, №1.-С.3-21.
11. Brittain S., Mohamed Z.A., Wang J., Lehmann V.K.B. Isolation and characterization of microcystins from a river Nile strain of Oscillatoria tenuis Agardh ex Gomont // Toxicon. - 2000. - V. 38, № 12. - P. 1759–1771.
12. Freshney R. I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, Sixth Edition ISBN: 978-0-470-52812-9. – 2001. - 796 p.
13. Dittman E., Fewer D.P., Neilan B.A. Cyanobacterial toxins: biosynthetic routes and evolutionary routes // FEMS Microbiol. Rev. - 2013. - V.37. - P. 23–43.
14. Bell S.G., Codd G.A. Cyanobacterial toxins and human health // Rev. Med. Microbiol. - 1994.- № 4. - P. 256-264.
15. Kardinal W.E.A., Visser P.M. Dynamics of cyanobacteria toxins. Sources of variability in
microcystin concentratio ns // Harmful cyanobacteria. Netherlands: Spinger, - 2005. - P. 41 -63.
16. Al-Sultan E.Y.A. The Isolation, the purification and the identification of hepatotoxin Microcystin-LR from two cyanobacterial species and studying biological activity on some aquatic organisms // J. Basrah Res. (Sci.). - 2011. - V. 37. - P. 39–57.
17. Codd G.A. Cyanobacterial toxins: occurrence, properties and biological significance // Wat. Sci. Tech. - 1995. - V. 32. - P.149–156.
18. Chaganty S., Golakoti T., Heltzel C., Moore R.E., Yoshida W.Y. Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp. GSV 224 // J. Nat. Prod. - 2004. - V. 67. - P.1403–1406.
19. Trimurtulu G., Ogino J., Helsel C.E., Husebo, Jensen C.M., Larsen L.K., Patterson G.M.L., Moore R.E., Mooberry S.I., Corbett T.H., Valeriote F.A. Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224 // J. Amer. Chem. Soc. - 1995. - V. 117. - P. 12030–12049.
20. Okino T., Murakami M., Haraguchi R., Munekata H., Matsuda H., Yamaguchi K. Micropeptins A and B, plasmin and trypsin inhibitors from the blue-green alga Microcystis aeruginosa // Tetrahedron Lett. - 1993. - V. 34, № 50. - P. 8131–8134.

References

1. Carmichael W.W. (1994) The toxins of Cyanobacteria, Sci. Amer. 1: 78–86.
2. Ballot A, Fastner J, and Wiedner C. (2010) Paralytic shellfish poisoning toxin-producing cyanobacterium Aphanizomenon gracile in northeast Germany, Appl. Environ. Microbiol. 76:1173–1180.
3. Namikoshi M., Rinehart K.L. (1996) Bioactive compounds produced by cyanobacteria, J. Industr. Microbiol. Biotechn. 17: 373–384.
4. Harada K.I. (2004) Production of secondary metabolites by freshwater cyanobacteria, Chem. Pharm. Bull. 5:889–899.
5. Gollerbah M.M.. (1951) The determinant of blue-green algae of the USSR, L: Nauka, pp. 1-14.
6. Andersen R.A. (2005) Algal Culturing Techniques, New York, NY, U.S.A. Elsevier Academic Press. pp. 578.
7. Tamraleeva A.D., Mincheva E.V., Bukin U.S., Andreeva A.M. (2014) Modern methods of isolation, cultivation and identification of green algae (Chlorophyta). Kostroma. [Sovremennye metody vydeleniya, kultivirovaniya I identifikacia zelenyh vodoroslei (Chlorophyta). – Kostroma] :215. (In Russian).
8. Jones A.K., Muriel E., Rhodes M.E., Evans S.C. (1973) The use of antibiotics to obtain axenic cultures of algae, Brit. Phycol. J. 8(1-2):185–196.
9. Day (1994) Chronictoxicity test using Daphnia magna or Daphnia pulex, SOP, 2028:https://clu-in.org/download/ert/2028-R00.pdf.
10. Voloshko L.N, Plush A.V., Titova N.N. (2008) Toxins Cyanobacteria. Algology (Cyanobacteia, Cyanophyta) [Toksiny Cianobakterii (Cyanobacteia, Cyanophyta). Algologia] 18 (1):3-21. (In Russian)
11. Brittain S., Mohamed Z.A., Wang J., Lehmann V.K.B (2000) Isolation and characterization of microcystins from a river Nile strain of Oscillatoria tenuis Agardh ex Gomont, Toxicon. 38 (12): 1759–1771.
12. Freshney R.I. (2005) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, Sixth Edition ISBN: 978-0-470-52812-9. P. 796.
13. Dittman E., Fewer D.P. (2013) Neilan B.A. Cyanobacterial toxins: biosynthetic routes and evolutionary routes, FEMS Microbiol. Rev.37: 23–43.
14. Bell S.G., Codd G.A. (1994) Cyanobacterial toxins and human health, Rev. Med. Microbiol. 4: 256-264.
15. Kardinal W.E.A., Visser P.M. (2005) Dynamics of cyanobacteria toxins. Sources of variability in microcystin concentratio ns, Harmful cyanobacteria. Netherlands: Spinger, 41 -63.
16. Al-Sultan E.Y.A. (2011) The Isolation, the purification and the identification of hepatotoxin Microcystin-LR from two cyanobacterial species and studying biological activity on some aquatic organisms, J. Basrah Res. (Sci.). 37:39–57.
17. Codd G.A. (1995) Cyanobacterial toxins: occurrence, properties and biological significance, Wat. Sci. Tech. 32:149–156.
18. Chaganty S., Golakoti T., Heltzel C., Moore R.E., Yoshida W.Y. (2004) Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp. GSV 224, J. Nat. Prod. 67:1403–1406.
19. Trimurtulu G., Ogino J., Helsel C.E., Husebo, Jensen C.M., Larsen L.K., Patterson G.M.L., Moore R.E., Mooberry S.I., Corbett T.H., Valeriote F.A. (1995) Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224, J. Amer. Chem. Soc. 117:12030–12049.
20. Okino T., Murakami M., Haraguchi R., Munekata H., Matsuda H., Yamaguchi K. (1993) Micropeptins A and B, plasmin and trypsin inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett. 34(50):8131–8134.

Downloads

How to Cite

Bolatkhan, K., Kopecky, J., Zhambakin, K. Z., Los, D. A., Sinetova, M. A., Akmukhanova, N. R., Sadvakasova, A. K., & Zayadan, B. K. (2018). Isolation and identification of new cultures of toxin-forming cyanobacteria from the Shar Nuur Lake. Experimental Biology, 70(1), 110–119. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1257

Most read articles by the same author(s)

1 2 3 > >>