Studies on the composition of rhizosphere microbiocenoses of sea buckthorn growing in ecosystems of Almaty oblast

Authors

  • G. D. Ultanbekova Institute of Microbiology and Virology, Republic of Kazakhstan, Almaty
  • L. P. Trenozhnikova Institute of Microbiology and Virology, Republic of Kazakhstan, Almaty
  • A. S. Balgimbaeva Institute of Microbiology and Virology, Republic of Kazakhstan, Almaty
  • R. Sh. Galimbaeva Institute of Microbiology and Virology, Republic of Kazakhstan, Almaty
  • Zh. Baydyldaeva Institute of Microbiology and Virology, Republic of Kazakhstan, Almaty
  • A. A. Nysanbayeva Institute of Microbiology and Virology, Republic of Kazakhstan, Almaty
  • G. M. Salkhozhaeva L.N. Gumilyov Eurasian National University, Republic of Kazakhstan, Astana
        54 43

Keywords:

actinorhizal plants, sea buckthorn, microbiocenosis, hemoorganotrophs, oligotrophs, actinomycetes,

Abstract

Microbiocenosis composition of the sea buckthorn rhizosphere zone from various ecosystems of Almaty oblast was examined. Studies have shown that the sea buckthorn rhizosphere is inhabited with diverse ecological and trophic groups of microorganisms, among which the dominant position is occupied by hemoorganotrophs - 1.2*107-1.3*108 CFU / g of soil, actinomycetes - 1.5-7.7-105 CFU/g of soil, and oligotrophs - 6.7*105 -3.0*106 CFU / g of soil. In the rhizosphere of sea buckthorn of all investigated soil types, an increase in diversity of the qualitative composition of actinomycetes was observed, which manifested itself primarily through appearance of the colored forms of actinomycetes of the Violaceus, Ruber and Coerulescens series.

Because sea buckthorn forms a symbiotic relationship with nitrogen-fixing bacteria of the genus Frankia and enriches the soil with nitrogen, it was important to establish the quantitative presence of free nitrogen-fixing bacteria in the rhizosphere and its control soil samples. In the rhizosphere buckthorn number of nitrogen-fixing Azotobacter genus of microorganisms is 20-80%, in the control samples - 8-50%.

References

Литературы

1 Березин Л.В., Сапаров А.С., Кан В.М., Шаяхметов М.Р. Технология комплексной мелиорации экосистем России и Казахстана.-Алматы: Спринт.- 2013.- С.11-12.
2 Саданов А.К., Смирнова И.Э. Целлюлитические бактерии и их применение в сельском хозяйстве. - Алматы: Литера. - 2015. - 260 с.
3 Wall L.G. The actinorhizal symbiosis // Journal of Plant Growth Regulation. – 2000. - Vol. 19, N 2. – P. 167–182.
4 Schwencke J., Carú M. Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review // Arid Land Research and Management. – 2001. - Vol. 15, № 4. – P. 285–327.
5 Baker, D., and J. G. Torrey. Characterization of an effective actinorhizal microsymbiont, Frankia sp. AvcI1 (Actinomycetales) // Journal of Applied Microbiology – 1980. - Vol. 26. - Р 1066-1071.
6 Bouras N., Meklat A., Toumatia O., Mokrane S., Holtz M.D., Strelkov S.E., Sabaou N. Bioactive potential of a new strain of Streptomyces sp. PP14 isolated from Canadian soil // Journal of Applied Microbiology – 2013. - Vol. 7, N 25. – P. 3199-3208.
7 Diagne N., Arumugam K., Ngom M., Nambiar-Veetil M., Franche C., Kumar Narayanan K., Laplaze L. Use of Frankia and Actinorhizal Plants for Degraded Lands Reclamation // BioMed Research International, 2013. – Vol. 21, N 1. – P. 151–165.
8 Sayed W.F. Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions-review // Folia Microbiologica. – 2011. - Vol. 56, N. 1. – P. 1–9.
9 Berry, A. M., and J. G. Torrey. Root hair deformation in the infection process of Alnus rubra // Journal of Applied Microbiology. – 1983. Vol. 61.- P 2863-2976.
10 Baker, D. D., and B. C. Mullin. Diversity of Frankia nodule endophytes of the actinorhizal shrub Ceanothus as assessed by RFLP patterns from single nodule lobes // Soil. Biol. Biochem. – 1994. Vol. 26.- P 547-552.
11 Berg R.H., Liu L., Dawson J.O., Savka A.M. Induction of Pseudoactinorhizae by the Plant Pathogen Agrobacterium rhizogenes // Plant Physiology.- 1992. Vol. 98.-P777–779.
12 Echbab H., Arahou M., Ducousso M. et al. Successful nodulation of Casuarina by Frankia in axenic conditions // Journal of Applied Microbiology. – 2007. - Vol. 103, N. 5. – P. 1728–1737.
13 Семенов С.М. Лабораторные среды для актиномицетов и грибов. - М.: Агропромиздат, 1990. - 283 с.
14 Урбах В.Ю. Статистический анализ в биологических и медицинских исследованиях.
- М.: Медицина, 1975. - 295 с.

References

1 Berezin LV, Saparov AS, Kan VM, SHayahmetov MR (2013) Technology of complex reclamation of Russia and Kazakhstan ecosystems [Tekhnologiya kompleksnoj melioracii ehkosistem Rossii i Kazahstana]. ISBN: 978-601-80286-3-2. (In Russian)
2 Sadanov AK, Smirnova IEH (2015) Tsellyuliticheskie bacteria and their use in agriculture [Cellyuliticheskie bakterii i ih primenenie v sel'skom hozyajstve]. ISBN:978-604-7437-04-6. (In Russian)
3 Wall LG (2000) The actinorhizal symbiosis, Journal of Plant Growth Regulation. 19: 167–182.
4 Schwencke J., Carú M. (2001) Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review, Arid Land Research and Management, 15(4): 285–327.
5 Baker D, Torrey JG (1980) Characterization of an effective actinorhizal microsymbiont, Frankia sp. AvcI1 (Actinomycetales), Journal of Applied Microbiology, 26:1066-1071.
6 Bouras N, Meklat A, Toumatia O, Mokrane S, Holtz D, Strelkov E, Sabaou N (2013) Bioactive potential of a new strain of Streptomyces sp. PP14 isolated from Canadian soil Journal of Applied Microbiology, 7(25): 3199-3208.
7 Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Kumar Narayanan K, Laplaze L (2013) Use of Frankia and Actinorhizal Plants for Degraded Lands Reclamation, BioMed Research International, 21 (1): 151–165.
8 Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions-review, Folia Microbiologica, 56 (1): 1–9.
9 Berry A M, Torrey J G (1983) Root hair deformation in the infection process of Alnus rubra, Journal of Applied Microbiology, 61: 2863-2976.
10 Baker D D, Mullin BC (1994) Diversity of Frankia nodule endophytes of the actinorhizal shrub Ceanothus as assessed by RFLP patterns from single nodule lobes, Soil. Biol. Biochem, 26:547-552.
11 Berg RH, Liu L, Dawson JO, Savka AM (1992) Induction of Pseudoactinorhizae by the Plant Pathogen Agrobacterium rhizogenes, Plant Physiology, 98: P777–779.
12 Echbab H, Arahou M, Ducousso M (2007) Successful nodulation of Casuarina by Frankia in axenic conditions, Journal of Applied Microbiology, 103: 1728–1737.
13 Semenov SM (1990) Laboratory environment for fungi and actinomycetes [Laboratornye sredy dlya aktinomicetov i gribov]. Agropromizdat, Moscow, Russia. (In Russian)
14 Urbach VY (1975) Statistical analysis in biological and medical research [Statisticheskij analiz v biologicheskih i medicinskih issledovanijah]. Medicine, Moscow, Russia. (In Russian)

Downloads

How to Cite

Ultanbekova, G. D., Trenozhnikova, L. P., Balgimbaeva, A. S., Galimbaeva, R. S., Baydyldaeva, Z., Nysanbayeva, A. A., & Salkhozhaeva, G. M. (2016). Studies on the composition of rhizosphere microbiocenoses of sea buckthorn growing in ecosystems of Almaty oblast. Experimental Biology, 67(2), 208–215. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1196

Most read articles by the same author(s)