Obtaining mutant forms of Mycobacterial AP endonuclease MtbXthA

Authors

  • S. Abeldenov Национальный центр биотехнологии, Астана, Казахстан
  • E. Ramanculov Национальный центр биотехнологии, Астана, Казахстан
  • M. Saparbaev Институт Густава Русси, Вильжуиф, Франция
  • B. Khassenov Национальный центр биотехнологии, Астана, Казахстан
        171 67

Keywords:

DNA repair, tuberculosis, AP endonucleases, genetic engineering, genomic stability.

Abstract

Apurinic/apyrimidinic (AP) endonucleases are a key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacterium Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo, which are representatives of exonuclease III and endonuclease IV families, respectively. It is known that both enzymes MtbXthA and MtbNfo contain AP endonuclease or 3'→ 5' exonuclease activities. This paper describes the cloning, expression and purification of recombinant protein MtbXthA. The results showed that comprises MtbXthA AP endonuclease, 3'-phosphodiesterase and 3 '→ 5' nonspecific exonuclease activity. To verify that the observed activity of the types of DNA repair are not the result of contamination by endonucleases of E.coli, mutants MtbXthA-D180N and MtbXthA-N182A were made. The analysis showed that the discovered mutations D180N and N182A in MtbXthA are crucial for enzyme activity.

Author Biographies

S. Abeldenov, Национальный центр биотехнологии, Астана, Казахстан

Абельденов Сайлау Касенович, научный сотрудник лаборатории генетики и биохимии микроорганизмов, РГП «Национальный центр биотехнологии»;

E. Ramanculov, Национальный центр биотехнологии, Астана, Казахстан

Раманкулов Ерлан Мирхайдарович, PhD, генеральный директор РГП «Национальный центр биотехнологии»;

M. Saparbaev, Институт Густава Русси, Вильжуиф, Франция

Сапарбаев Мурат Калиевич, заведующий группой репарации ДНК, Институт Густава Рози, Вильжюиф, Франция;

B. Khassenov, Национальный центр биотехнологии, Астана, Казахстан

Хасенов Бекболат Бауржанович, заведующий лабораторией генетики и биохимии микроорганизмов, РГП «Национальный центр биотехнологии».

References

1. World Health Organisation. Global Tuberculosis Report 2013 //. - 2013.
2. Schlosser-Silverman E., Elgrably-Weiss M., Rosenshine I., Kohen R., Altuvia S. Characterization of Escherichia coli DNA lesions generated within J774 macrophages // J Bacteriol. - 2000. - T. 182. - № 18. - C. 5225-30.
3. Olano J., Lopez B., Reyes A., Lemos M. P., Correa N., Del Portillo P., Barrera L., Robledo J., Ritacco V., Zambrano M. M. Mutations in DNA repair genes are associated with the Haarlem lineage of Mycobacterium tuberculosis independently of their antibiotic resistance // Tuberculosis (Edinb). - 2007. - T. 87. - № 6. - C. 502-8.
4. Blazquez J. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance // Clin Infect Dis. - 2003. - T. 37 - № 9. - C. 1201-9.
5. Friedberg E. C. DNA damage and repair // Nature. - 2003. - T. 421 - № 6921. - C. 436-40.
6. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd, Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., Connor R., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver K., Osborne J., Quail M. A., Rajandream M. A., Rogers J., Rutter S., Seeger K., Skelton J., Squares R., Squares S., Sulston J. E., Taylor K., Whitehead S., Barrell B. G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence // Nature. - 1998. - T. 393. - № 6685. - C. 537-44.
7. Lindahl T. New class of enzymes acting on damaged DNA // Nature. - 1976. - T. 259. - № 5538. - C. 64-6.
8. Fromme J. C., Banerjee A., Verdine G. L. DNA glycosylase recognition and catalysis // Curr Opin Struct Biol. - 2004. - T. 14. - № 1. - C. 43-9.
9. Nunoshiba T., deRojas-Walker T., Wishnok J. S., Tannenbaum S. R., Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages // Proc Natl Acad Sci U S A. - 1993. - T. 90. - № 21. - C. 9993-7.
10. Puri R. V., Singh N., Gupta R. K., Tyagi A. K. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage // PLoS One. - 2013. - T. 8. - № 8. - C. e71535.
11. Tsutakawa S. E., Shin D. S., Mol C. D., Izumi T., Arvai A. S., Mantha A. K., Szczesny B., Ivanov I. N., Hosfield D. J., Maiti B., Pique M. E., Frankel K. A., Hitomi K., Cunningham R. P., Mitra S., Tainer J. A. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes // J Biol Chem. - 2013. - T. 288. - № 12. - C. 8445-55.
12. Carpenter E. P., Corbett A., Thomson H., Adacha J., Jensen K., Bergeron J., Kasampalidis I., Exley R., Winterbotham M., Tang C., Baldwin G. S., Freemont P. AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis // EMBO J. - 2007. - T. 26. - № 5. - C. 1363-72.
13. Abeldenov S., Khassenov B. Cloning, expression and purification of recombinant analog of Taq DNA polymerase // Biotechnology. Theory and Practice. - 2014. - № 1. - C. 12-16.

Downloads

How to Cite

Abeldenov, S., Ramanculov, E., Saparbaev, M., & Khassenov, B. (2016). Obtaining mutant forms of Mycobacterial AP endonuclease MtbXthA. Experimental Biology, 65(3), 86–93. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1101

Issue

Section

МOLECULAR BIOLOGY AND GENETICS