АКТИВНОСТЬ И КОМПОНЕНТНЫЙ СОСТАВ ЗАЩИТНЫХ БЕЛКОВ В ЗЕРНЕ И ПРОРОСТКАХ ПШЕНИЦЫ, ЯЧМЕНЯ И ОВСА

Авторы

  • В.А. Кузовлев Институт молекулярной биологии и биохимии им. М.А. Айтхожина КН МОН РК, Казахстан, г. Алматы
  • A.O. Абайлдаев Институт молекулярной биологии и биохимии им. М.А. Айтхожина КН МОН РК, Казахстан, г. Алматы
  • А.А. Хакимжанов РГП на ПХВ "ИМББ им. М.А. Айтхожина" КН МОН РК

DOI:

https://doi.org/10.26577/eb.2022.v92.i3.09
        69 89

Ключевые слова:

пшеница, ячмень, овес, β-1,3-глюканаза, хитиназа, пероксидаза, ингибиторы протеаз

Аннотация

Целью работы явилось сравнительное исследование уровня активности и состава β-1,3-глюканазы, хитиназы, пероксидазы и ингибиторов протеаз в зерне и проростках пшеницы, ячменя и овса. Эти белки выполняют важную физиологическую роль, а также участвуют в защите растений от патогенов. Эксперименты по проращиванию, выделению и анализу белков проводились в одинаковых условиях, что способствовало объективной оценке защитного потенциала у исследуемых злаков. Наибольшей активностью и степенью гетерогенности при ИЭФ β-1,3-глюканазы отличались зерна и проростки ячменя, тогда как для овса характерен относительно низкий уровень фермента. Высокую активность хитиназы имели зерна и проростки овса. Активность и изоферментный состав ПО сильно варьировал у трех злаков, как в покоящихся зернах, так и в органах проростка. Наибольшим содержанием ингибиторов протеаз обладали зерна пшеницы, а наименьшим – овса. Изученные свойства ферментов и ингибиторов в норме в качестве конститутивных  могут быть полезными при изучении их изменчивости и индукции новых изоформ при стрессовых воздействиях, в том числе, вызванных патогенами. Эти данные могут быть использованы и для оценки некоторых качественных характеристик зерна.

Библиографические ссылки

Leubner-Metzger G. Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening // Seed Sci. Res. – 2003. – Vol. 13. – P. 17-34.

Finnie C., Bak-Jensen K., Laugesen S., Roepstorff P., Svensson B. Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome // Plant Sci. – 2006. – Vol. 170. – P. 808-821.

Gupta P., Ravi I., Sharma V. Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola // J. Plant Interact. – 2013. – Vol. 8. - P. 155-161.

Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi // Biotechnol. Letters. – 2012. – Vol. 34, No 11. – P. 1983-1990.

Gorganovich S. Biological and technological function of barley seed pathogenesis-related proteins (PRs) // J. Inst. Brewing. – 2009. – Vol. 115, No 4. – P. 334-360.

Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mira Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawat S., Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance // Microbiol. Res. – 2018. – Vol. 212-213. – P. 29-37.

Mishra A.K., Sharma K., Misra R.S. Elicitor recognition, signal transduction and induced resistance in plants // J. Plant Interact. – 2012. – Vol. 7, No 2. – P. 95-120.

Van Loon L.C., Rep M., Pieterse C.M.J. Significance of inducible defence-related proteins in infected plants // Ann. Rev. Phytopathol. – 2006. – Vol. 44. – P. 135-162.

Sharma V. Pathogenesis related defense function of plant chitinases and β-(1,3)-glucanases // Vegetos. – 2013. – Vol. 26. – P. 205-218

Jamar C., Jardin P., Fauconnier M.L. Cell wall polysaccharide hydrolysis of malting barley (Hordeum vulgare L.) // Biotechnol., Agronomy, Soc. Environ. – 2011. – Vol. 15, No 2. – P. 301-313.

Sharma N., Sharma K.P., Gaur R.K., Gupta V.K. Role of chitinase in plant defense // Asian J. Biochem. – 2011. – Vol. 6, No 1. – P. 29-37.

Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. Chitinases - potential candidates for enhanced plant resistance towards fungal pathogens // Agriculture. – 2018. – Vol. 8, No 88. - P. 1-12.

Kasprzewska A. Plant chitinases - regulation and function // Cell. Mol. Biol. Letters. – 2003. – Vol. 8, No 3. – P. 809-824.

Ohnuma T., Numata T., Osawa T., Inanaga H., Okazaki Y., Shinya S., Kondo K., Fukuda T., Fukamizo T. Crystal structure and chitin oligosaccharide-binding mode of a ‘loopful’ family GH19 chitinase from rye, Secale cereale, seeds // FEBS J. – 2012. – Vol. 279. – P. 3639-3651.

Stoykov Y.M., Pavlov A.I., Krastanov A.I. Chitinase biotechnology: production, purification, and application // Engineer. Life Sci. – 2015. – Vol. 15. – P. 30-38.

Taira, T. Structures and antifungal activity of plant chitinases // J. Appl. Glycosci. – 2010 – Vol. 57. – P. 167-176.

Oyeleye A., Normi Y. Chitinase: diversity, limitations, and trends in engineering for suitable applications // Biosci. Reports. – 2018. – Vol. 38. – P. 1-21.

Grover A. Plant chitinases: genetic diversity and physiological roles // Critical Rev. Plant Sci. – 2012. – Vol. 31. P. 57-73.

Tanaka J., Fukamizo T., Ohnuma T. Eymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding // Glycobiology. – 2017. – Vol. 27, No 5. – P. 477-485.

Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. A large family of class III plant peroxidase // Plant Cell Physiol. – 2001 – Vol. 42, No 5. – P. 462-468.

Maksimov I.V., Cherepanova E.A., Burkhanova G.F., Sorokan A.V., Kuzmina O.I. Structural-functional features of plant isoperoxidases // Biochemistry (Moscow). – 2011. – Vol. 76, No 6. – P. 609-621.

Kukavica B.M., Jovanovic S.D., Menckhoff L., Lüthje S. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth // J. Exp. Bot. – 2012. – Vol. 63, No 12. – P. 4631-4645.

Almagro L., Goґmez Ros L.V., Belchi-Navarro S., Bru R., Ros Barcelo A., Pedreno M.A. Class III peroxidases in plant defence reactions // J. Exp. Bot. – 2008. – Vol. 10. – P. 1-14.

Moural T.W., Lewis K.M., Barnaba C., Zhu F., Palmer N.A., Sarath G., Scully E.D., Jones J.P., Scott E., Sattler S.E., Kang C.H. Characterization of class III peroxidases from Switchgrass // Plant Physiol. – 2017. – Vol. 173. – P. 417-433.

Mosolov V.V., Valueva T.A. Proteinase inhibitors and their function in plants: a review // Appl. Biochem. Microbiol. – 2005. – Vol. 41, No 3. – P. 227-246.

Jashni M.K., Mehrabi R., Collemare J., Mesarich C.H., de Wit P.J. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions // Front. Plant Sci. – 2015. – Vol. 6. – P. 584-591.

Eggert K., Rawel H.M., Pawelzik E. In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases // Eur. Food Res. Technol. – 2011. – Vol. 233, No 4. – P.697-705.

Valueva T.A., Kudryavtseva N.N., Sof’in A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V. Comparative analyses of exoproteinases produced by three phytopathogenic microorganisms // J. Pathogens. – 2011. – Vol. 2011. – P. 1-9.

Chandrasekaran M., Thangavelu B., Chun S.C., Sathiyabama M. Proteases from phytopathogenic fungi and their importance in phytopathogenicity // J. Gen. Plant Pathol. – 2016. – Vol. 82, No 5. – P. 233–239.

Pekkarinen A.I., Longstaff C., Jones B.L. Kinetics of the Inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors // J. Agric. Food Chem. – 2007. – Vol. 55, No 7. – P. 2736-2742.

Clemente M., Corigliano M.G., Pariani S.A., Sánchez-López E.F., Sander V.A., Ramos-Duarte V.A. Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming // Int. J. Mol. Sci. – 2019. – Vol. 20. – P. 1345-1366.

Fink W., Liefland M., Mendgen K. Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.) // Plant Physiol. – 1988. – Vol. 88. – P. 270-275.

Fornera S., Walde P. Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine // Analyt. Biochem. – 2010. – Vol. 407. – P. 293-295.

Pan S.Q., Ye X.S., Kúc J. Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels // Analyt. Biochem. – 1989. – Vol. 182. – P. 136-140.

Trudel, J., Asselin, A. Detection of chitinase activity after polyacrylamide gel electrophoresis // Analyt. Biochem. – 1989. – Vol. 178. – P. 362-366.

Magro P. Onion neck rot: isoperoxidase patterns in infected scales and the effect of Botrytis allii polygalacturonase on host peroxidase and phenolic compounds // Rivista Patologia vegetale. – 1984. – Vol. 20, No 3. – P. 124-132.

Havrlentová M., Petruláková Z., Burgárová A., Gago F., Hlinková A., Šturdík E. Cereal β-glucans and their significance for the preparation of functional foods // Czech J. Food Sci. – 2011. – Vol. 29, No 1. – P. 1-14.

Maksimov I.V., Valeev A.S., Cherepanova E.A., Burkhanova G.F. Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen_inducible anionic peroxidase // Applied Biochem. Microbiol. – 2014. – Vol. 50, No 1. – P. 82-87.

Takashima Y., Suzuki M., Ishiguri F., Iizuka K., Yoshizawa N., Yokota S. Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No.8 against canker-rot fungus Inonotus obliquus strain IO-U1 // Plant Biotechol. – 2013. – Vol. 30. – P. 1-7.

Moravčíková J., Margetínyová D., Gálová Z., Žur I., Gregorová Z., Zimová M., Boszorádová E., Matušíková I. Beta-1,3-glucanase activities in wheat and relative species // Nova Biotechnologica et Chimica. – 2016. – Vol. 15, No 2. – P. 122-132.

Moravčíková Y., Ujvariová N., Zur I, Gálová Z., Gregorová Z, Zimová M, Boszorádová E., Matušíková I., Сhitinase activities in wheat and its relative species // Agriculture Poľnohospodárstvo. – 2017. – Vol. 63, No 1. – P. 14-22.

Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mira Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawa S., Grover A. (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res., vol. 212-213, pp. 29-37.

Almagro L., Goґmez Ros L.V., Belchi-Navarro S., Bru R., Ros Barcelo A., Pedreno M.A. (2008) Class III peroxidases in plant defense reactions. J. Exp. Bot., vol. 10, pp. 1-14.

Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. (2012) Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol. Letters, vol. 34, no.11, pp. 1983-1990.

Chandrasekaran M., Thangavelu B., Chun S.C., Sathiyabama M. (2016) Proteases from phytopathogenic fungi and their importance in phytopathogenicity. J. Gen. Plant Pathol., vol. 82, no. 5, pp. 233–239.

Clemente M., Corigliano M.G., Pariani S.A., Sánchez-López E.F., Sander V.A., Ramos-Duarte V.A. (2019) Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int. J. Molecular Sci., vol. 20, pp. 1345-1366.

Eggert K., Rawel H.M., Pawelzik E. (2011) In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases. Eur. Food Res. Technol., vol. 233, no. 4, pp.697-705.

Fink W., Liefland M., Mendgen K. (1988) Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.). Plant Physiol., vol. 88, pp. 270-275.

Finnie C., Bak-Jensen K., Laugesen S., Roepstorff P., Svensson B. (2006) Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci., vol. 170, pp. 808-821.

Fornera S., Walde P. (2010) Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine. Analyt. Biochem., vol. 407, pp. 293-295.

Gorganovich S (2009) Biological and technological function of barley seed pathogenesis-related proteins (PRs). J. Inst. Brewing, vol. 115, no. 4, pp. 334-360.

Grover A. (2012) Plant chitinases: genetic diversity and physiological roles. Critical Rev. Plant Sci.,.vol. 31, pp. 57-73.

Gupta P., Ravi I., Sharma V. (2013) Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J. Plant Interact., vol. 8, pp. 155-161.

Havrlentová M., Petruláková Z., Burgárová A., Gago F., Hlinková A., Šturdík E. (2011) Cereal β-glucans and their significance for the preparation of functional foods. Czech J. Food Sci., vol. 29, no. 1, pp. 1-14.

Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. (2001) A large family of class III plant peroxidase. Plant Cell Physiol. vol. 42, no 5, pp. 462-468.

Jashni M.K., Mehrabi R., Collemare J., Mesarich C.H., de Wit P.J. (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front. Plant Sci, vol. 6, pp. 584-591.

Jamar C., Jardin P., Fauconnier M.L. (2011) Cell wall polysaccharide hydrolysis of malting barley (Hordeum vulgare L.).Biotechnol., Agronomy, Soc. Environ., vol. 15, no. 2, pp. 301-313.

Kasprzewska A. (2003) Plant chitinases - regulation and function. Cellular Molecular Biology Letters, vol. 8, no. 3, pp. 809-824.

Kukavica B.M., Jovanovic S.D., Menckhoff L., Lüthje S. (2012) Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. J. Exp. Bot., vol. 63, no.12, pp. 4631-4645.

Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. (2018) Chitinases - potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture, vol. 8, no. 88, pp. 1-12.

Leubner-Metzger G. (2003) Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Sci. Res., vol. 13, pp. 17-34.

Magro P. (1984) Onion neck rot: isoperoxidase patterns in infected scales and the effect of Botrytis allii polygalacturonase on host peroxidase and phenolic compounds. Rivista Patologia vegetale, vol. 20, no. 3, pp. 124-132.

Maksimov I.V., Cherepanova E.A., Burkhanova G.F., Sorokan A.V., Kuzmina O.I. (2011) Structural-functional features of plant isoperoxidases. Biochemistry (Moscow), vol. 76, no. 6, pp. 609-621.

Maksimov I.V., Valeev A.S., Cherepanova E.A., Burkhanova G.F. (2014) Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen_inducible anionic peroxidase. Appl. Biochem. Microbiol., vol. 50, no. 1, pp. 82-87.

Mishra A.K., Sharma K., Misra R.S. (2012) Elicitor recognition, signal transduction and induced resistance in plants. J. Plant Interact., vol. 7, no. 2, pp. 95-120.

Moravčíková J,, Margetínyová D,, Gálová Z,, Žur I,, Gregorová Z,, Zimová M,, Boszorádová E,, Matušíková I, (2016) Beta-1,3-glucanase activities in wheat and relative species. Nova Biotechnologica et Chimica, vol. 15, no.2, pp. 122-132.

Moravčíková Y., Ujvariová N., Zur I., Gálová Z., Gregorová Z., Zimová M., Boszorádová E., Matušíková I. (2017) Сhitinase activities in wheat and its relative species, Agriculture Poľnohospodárstvo, vol. 63, no. 1, pp. 14-22.

Mosolov V.V., Valueva T.A. (2005) Proteinase inhibitors and their function in plants: a review. Appl. Biochem. Microbiol., vol. 41, no. 3, pp. 227-246.

Moural T.W., Lewis K.M., Barnaba C., Zhu F., Palmer N.A., Sarath G., Scully E.D., Jones J.P., Scott E., Sattler S.E., Kang C.H. (2017) Characterization of class III peroxidases from Switchgrass. Plant Physiol., vol. 173, pp. 417-433.

Ohnuma T., Numata T., Osawa T., Inanaga H., Okazaki Y., Shinya S., Kondo K., Fukuda T., Fukamizo T. (2012) Crystal structure and chitin oligosaccharide-binding mode of a ‘loopful’ family GH19 chitinase from rye, Secale cereale, seeds. FEBS J., vol. 279, pp. 3639-3651.

Oyeleye A., Normi Y. (2018) Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci. Reports, vol. 38, pp. 1-21.

Pan S.Q., Ye X.S., Kúc J (1988) Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Analyt. Biochem., vol. 182, pp. 136-140.

Pekkarinen A.I., Longstaff C., Jones B.L. (2007) Kinetics of the Inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. J. Agric. Food Chem., vol. 55, 7, pp. 2736-2742.

Sharma N., Sharma K.P., Gaur R.K., Gupta V.K. (2011) Role of chitinase in plant defense. Asian J. Biochem., vol. 6, 1, pp. 29-37.

Sharma V. (2013) Pathogenesis related defense function of plant chitinases and β-(1,3)-glucanases. Vegetos, vol. 26, pp. 205-218.

Stoykov Y.M., Pavlov A.I., Krastanov A.I. (2015) Chitinase biotechnology: production, purification, and application. Engineer. Life Sci., vol. 15, pp. 30-38.

Taira T. (2010) Structures and antifungal activity of plant chitinases. J. Applied Glycoscience, vol. 57, pp. 167-176.

Takashima Y,, Suzuki M,, Ishiguri F,, Iizuka K,, Yoshizawa N,, Yokota S, (2013) Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No.8 against canker-rot fungus Inonotus obliquus strain IO-U1. Plant Biotechol., vol. 30, pp. 1-7.

Tanaka J., Fukamizo T., Ohnuma T. (2017) Eymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding. Glycobiology, vol. 27, no. 5, pp. 477-485.

Trudel J., Asselin A. (1989). Detection of chitinase activity after polyacrylamide gel electrophoresis. Analyt. Biochem., vol. 178, pp. 362-366.

Valueva T.A., Kudryavtseva N.N., Sof’in A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V. (2011) Comparative analyses of exoproteinases produced by three phytopathogenic microorganisms. J. Pathogens, vol. 2011, pp. 1-9.

Van Loon L.C., Rep M., Pieterse C.M.J. (2006) Significance of inducible defence-related proteins in infected plants. Ann. Rev. Phytopathol., vol. 44, pp. 135-162.

Загрузки

Как цитировать

Кузовлев , В. ., Абайлдаев A. ., & Хакимжанов, А. . (2022). АКТИВНОСТЬ И КОМПОНЕНТНЫЙ СОСТАВ ЗАЩИТНЫХ БЕЛКОВ В ЗЕРНЕ И ПРОРОСТКАХ ПШЕНИЦЫ, ЯЧМЕНЯ И ОВСА. Вестник КазНУ. Серия биологическая, 92(3), 109–120. https://doi.org/10.26577/eb.2022.v92.i3.09

Выпуск

Раздел

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА

Наиболее читаемые статьи этого автора (авторов)