The prediction of miRNAs binding sites in CDS mRNA genes having trinucleotide repeats

Authors

  • A. M. Belkozhayev
  • R. E. Niyazova
  • A. T. Ivashchenko

DOI:

https://doi.org/10.26577/eb-2019-2-1422

Abstract

In human diseases and physiology, the function of miRNAs is expanding; however, especially nucleotide repeats disorder the majority of miRNA - driven regulatory structure is remaining uncertain. The aim of this work is to reveal which candidate genes of nucleotide repeat diseases and in which degrees can interact with miRNA. We present results on the interaction of  2567 miRNAs with mRNA 102 candidate genes of having nucleotide repeats using the MirTarget program. miRNAs binding sites in the CDS mRNAs of 36 genes from 102 candidate genes with nucleotide repeats have been shown. Among miRNAs that bind with high energy to mRNA genes with nucleotide repeats, we choose five miRNAs that have binding sites for two or more genes: miR-3656 (ARX, EP400, HTT, NCOR2); miR-3960 (ARX, CACNA1I, HTT); miR-1322 (ATN, EP400, GIGYF2, HTT, NCOR2); miR-1281 (CACNA1I, HRC, HTT); miR-4279 (CACNA1I, NCOR2). It was determined that considering miRNAs binding sites are located mainly in regions with CAG, GCG, GAG repeats. Neurological disorders are known to be caused by an increased number of CAG, GCG, GAG repeats, typically in coding regions of otherwise unrelated proteins. Better understanding of interaction specificity of miRNAs and genes promises to offer further in sights into the pathogenic pathways of trinucleotide repeats expansion disorders.

Keywords: miRNA, mRNA, coding sequence, binding site, trinucleotide repeat.

References

1. Jasinska A., Krzyzosiak W.J. Repetitive sequences that shape the human transcriptome // FEBS Lett. - 2004. -Vol. 567. –P. 136-41.
2. MarzenaW., Wlodzimierz J. CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders // RNA Biology. – 2011. – Vol. 8.4.- P.565-571.
3. Liquori C.L., Ricker K., Moseley M.L., Jacobsen J.F., Kress W., Naylor S.L. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9 // Science. – 2001. – Vol. 293. 864-867.
4. Matsuura T., Fang P., Lin X., Khajavi M., Tsuji K., Rasmussen A. Somatic and germline instability of the ATTCT repeat in spinocerebellar ataxia type 10 // American Journal of Human Genetics. – 2004. – Vol. 74(6). – P. 1216–1224.
5. Gohel D., Sripada L., Prajapati P., Singh K., Roy M., Kotadia D., Tassone F., Charlet-Berguerand N., Singh R. FMR poly G alters mitochondrial transcripts level and respiratory chain complex assembly in Fragile X associated tremor/ataxia syndrome FXTAS // Biochim Biophys Acta Mol Basis Dis. - 2019. – Vol. 0925-4439 (19). – P. 30062-6.
6. Maureen A., Leehey, M.D. Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) // Clinical Phenotype, Diagnosis and Treatment. - 2009; - Vol.57(8). – P. 830–836.
7. Patrick A., Marc S. Applied RNAi From Fundamental Research to Therapeutic Applications // Antiviral Gene Therapy Research Unit, School of Pathology.– 2014. - ISBN 978-1-908230-67-6.
8. Danny B., Catherine L., Cyntia B., Guillaume T., Julie M., Xavier R. An Out-of-frame Overlapping Reading Frame in the Ataxin-1 Coding Sequence Encodes a Novel Ataxin-1 Interacting Protein // J Biol Chem. – 2013. – Vol. 288 (30). – P. 21824–21835.
9. Aaron M., Carrie S., Austin F., Orion R., Marija C., Brain D. Neurotrophic Factor (BDNF) Delays Onset of Pathogenesis in Transgenic Mouse Model of Spinocerebellar Ataxia Type 1 (SCA1) // Front Cell Neurosci. – 2018. – Vol.12.– PMC. 6348256.
10. Simon C., Alexandre M., Anna R., Jeffrey B., Stefanie L. CAG Expansion in the Huntington Disease Gene Is Associated with a Specific and Targetable Predisposing Haplogroup // Am J Hum Genet. – 2009. – Vol. 84 (3). – P. 351–366.
11. Kushal J. Keith T. RNA biology of disease-associated micro satellite repeat expansions // Rohilla and Gagnon Acta Neuropathological Communications. – 2017. – Vol.5:63.–doi. 10.1186/s40478-017-0468-y.
12. Dumitrescu L., Popescu B.O. MicroRNAs in CAG trinucleotide repeat expansion disorders // an integrated review of the literature. – 2015. - Vol.14(2). – P. 176-93
13. Helen B., Cynthia T., MurrayA. Brief History of Triplet Repeat Diseases // Methods Mol Biol. – 2013. – Vol. 1010. – P. 3-17.
14. Chen, P.S., Su J.L., Hung, M.C. Dysregulation of microRNAs in cancer // Journal of Biomedical Science. -2012. - doi: 10.1186/1423-0127-19-90.
15. Cary N., Keisuke I. A. Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease // Int Rev Cell Mol Biol. – 2017. - Vol.334. – P. 99 –175.
16. Ivashchenko A., Niyazova R. MicroRNA. Function, properties, application // Ed. KazNU. - 2016. - ISBN 9786010423855. – P. 317.
17. Cann C., Holohan E.E., Das S., Dervan A., Larkin A., Lee J.A. Rodrigues V., Parker R., Ramaswami M. The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation // Proc. Natl. Acad. Sci. U.S.A. – 2011. – Vol. 108. - P.655–662.
18. Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y. Prediction of miRNA binding sites in mRNA // Bioinformation. – 2016. – Vol. 12. – P. 237-240.
19. Kool E.T. Hydrogen bonding, base stacking, and steric effects in DNA replication // Annual Review of Biophysics and Biomolecular Structure. – 2001. Vol. 30. – P. 1–22.
20. Wanker E.E., Protein aggregation and pathogenesis of Huntington’s disease: mechanisms and correlations // Biol. Chem. – 2000. –Vol. 381. - P. 937–942.
21. Gusella J.F., MacDonald M.E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease // Nature Rev. Neurosci. – 2000. – Vol. 1.– P. 109–115.
22. Scherzinger E., Sittler A., Schweiger K., Heiser V., Lurz R., Hasenbank R., Bates G.P., Lehrach H., Wanker E.E. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology // Proc. Natl Acad. Sci. USA. -1999. - Vol. 96. – P. 4604–4609.
23. Waelter S., Boeddrich A., Lurz R., Scherzinger E., Lueder G., Lehrach H., Wanker E.E., Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation // Mol. Biol. Cell – 2001. – Vol. 12.– P. 1393–1407.
24. Niyazova R., Berillo O., Atambayeva Sh., Pyrkova A., Alybaeva A., Ivashchenko A. miR-1322 Binding Sites in Paralogous and Orthologous Genes // Biomed Research International. – 2015. – Vol. 2015 – P. 1-7.
25. Duclot F., Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders // Front BehavNeurosci. – 2017. –Vol. 11. – P. 35.

Downloads

Published

2019-09-14

Most read articles by the same author(s)

1 2 3 > >>