ПЕРСПЕКТИВЫ И ПРОБЛЕМЫ ПРОИЗВОДСТВА ВОДОРОДА ЦИАНОБАКТЕРИЯМИ ANABAENA

Авторы

  • Г.Қ. Қамшыбаева НАО «Казахский национальный университет им. аль-Фараби», ул. Аль-Фараби, 71, Алматы, Казахстан
  • Б.Д. Қосалбаев НАО «Казахский национальный университет им. аль-Фараби», ул. Аль-Фараби, 71, Алматы, Казахстан
  • A.К. Садвакасова НАО «КазНИТУ имени К.И.Сатпаева», Сатпаева, 22, Алматы, Казахстан
  • Б.К. Заядан НАО «Казахский национальный университет им. аль-Фараби», ул. Аль-Фараби, 71, Алматы, Казахстан

DOI:

https://doi.org/10.26577/eb.2022.v92.i3.05
        133 110

Ключевые слова:

Цианобактерии, Anabaena sp., Производство H2, Биоэнергетика

Аннотация

Бесконтрольное использование традиционных источников энергии в 21-м веке привело к повышению температуры поверхности Земли на 2ºС за последнее столетие. В связи с возрастающими негативными аспектами традиционных источников энергии производство водорода из микроорганизмов быстро стало объектом интенсивных исследований. Однако из-за их низкой концентрации биомассы коммерческое производство водорода (H2) из ​​микроорганизмов еще не реализовано. В связи с этим важно выявить штаммы продуцентов водорода – цианобактерий, которые активно используются в биотехнологии, и провести работы по увеличению возможностей выделения водорода. В этой обзорной статье рассматривается важность цианобактерий Anabaena в производстве водорода и их механизмы выделения водорода, а также рассматриваются основные факторы, влияющие на выделение H2. Включены новейшие технологии выделения водорода, а также работы по увеличению количества водорода под воздействием химических и физических факторов. Из-за низкой способности штаммов Anabaena катализировать молекулы водорода в настоящее время будущие исследования будут ограничены технологиями генной инженерии. Решить проблемы, возникающие в современной биоводородной промышленности, можно только путем параллельного проведения генетических, технических и метаболических исследований.

 

Библиографические ссылки

Spiller H., Ernst A., Kerfin W., Böger P. Increase and stabilization of photoproduction of hydrogen in Nostoc muscorum by photosynthetic electron transport inhibitors // Zeitschrift für Naturforschung. – 1978. – Vol. 33. – P. 541–47.

Burrows E., Chaplen F., Ely R. Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803 // Bioresource technology. – 2010. – Vol. 102. – P. 3062–70.

Abdelwahab H.E.M. Hydrogen production in the cyanobacterium Synechocystis sp. PCC 6803 with engineered subunit of the bidirectional H2-ase // Advances in Life Science and Technology. – 2014. – Vol. 18. – P. 7–19.

Sadvakasova A.K., Kossalbayev B.D., Zayadan B.K., Bolatkhan K., Alwasel S., Najafpour M.M., Tatsuya T., Allakhverdiev S.I. Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity // Renewable and Sustainable Energy Reviews. – 2020. – Vol. 133. – P. 110054. https://doi.org/10.1016/j.rser.2020.110054

Tiwari A., Pandey A. Cyanobacterial hydrogen production – a step towards clean environment // Int J Hydrogen Energy. – 2012. – Vol. 37. – P. 139–50.

Kaushik A., Anjana K. Biohydrogen production by Lyngbya perelegans: influence of physic-chemical environment // Biomass Bioenergy. – 2011. – Vol. 35. – P. 1041–5.

Razeghifard R. Algal biofuels // Photosynth Res. – 2013. – Vol. 117. – P. 207–19.

Tamburic B., Zemichael F.W., Maitland G.C., Hellgardt K. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii // Int J Hydrogen Energy. – 2011. – Vol. 36. – P. 7872–6.

Antal T.K., Krendeleva T.E., Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production // Photosynth Res. – 2015. – Vol. 125, No 3. – P. 357–81.

Kosourov S., Tsygankov A., Seibert M., Ghirardi M.L. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters // Biotechnol Bioeng. – 2002. – Vol. 78, No 3. – P. 731–40.

Stebegg R. Heterotrophic Growth of the Cyanobacterium Anabaena (Nostoc) sp. strain PCC7120 and its Dependence on a Functional Cox1 Locus Encoding Cytochrome C Oxidase, Dissertation (Master in Genetics - Microbiology) Universität Wien, Wien, 2011, p. 130.

Yeager C.M., Milliken C.E., Bagwell C.E., Staples L., Berseth P.A., Sessions H.T. Evaluation of experimental conditions that influence hydrogen production among heterocystous cyanobacteria // Int J Hydrogen Energy. – 2011. – Vol. 36. – P. 7487–99.

Masukawa H., Nakamura K., Mochimaru M., Sakurai H. Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. In: Miyake J., Matsunaga T., San Pietro A., BioHydrogen II. – United Kingdom: Elsevier 2001. – P. 63–6.

Allahverdiyeva Y., Leino H., Saari L., Fewer D.P., Shunmugam S., Sivonen K., et al. Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes // Int J Hydrogen Energy. – 2010. – Vol. 35. – P. 1117–27.

Berberoglu H., Jay .J, Pilon L. Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413 // Int J Hydrogen Energy. – 2008. – Vol. 33. – P. 1172–84.

Sveshnikov D.A., Sveshnikova N.V., Rao K.K., Hall D.O. Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress // FEBS Microbiol Lett. – 1997. – Vol. 147. – P. 297–301.

Vyas D., Kumar H.D. Nitrogen fixation and hydrogen uptake in four cyanobacteria // Int J Hydrogen Energy. – 1995. – Vol. 20, No 2. – P. 163–8.

Tsygankov A., Serebryakova L., Rao K., Hall D. Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations // FEMS Microbiol Lett. – 1998. – Vol. 167. – P. 13–7.

Markov S.A., Protasov E.S., Bybin V.A., Eivazova E.R., Stom D.I. Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor // Int J Hydrogen Energy. – 2015. – Vol. 40. – P. 4752–7.

Benemann J.R. Hydrogen production by microalgae // J Appl Phycol. – 2000. – Vol. 12. – P. 291–300.

Tamagnini P., Troshina O., Oxelfelt F., Salema R., Lindblad P. Hydrogenases in Nostoc sp. strain PCC 73102, a strain lacking a bidirectional enzyme // Appl Environ Microbiol. – 1997;63. – P. 1801–7.

Bergman B., Gallon J.R., Rai A.N., Stal L.J. N2 fixation by non-heterocystous cyanobacteria // FEMS Microbiol Rev. – 1997. – Vol. 19. – P. 139–85.

Herrero A., Muro-Pastor A.M., Flores E. Nitrogen control in cyanobacteria // J. Bacteriol – 2001. – Vol. 183. – P. 411–25.

Borodin V.B., Tsygankov A., Rao K.K., Hall D.O. Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions // Biotechnol. Bioeng. – 2000. – Vol. 69:479–85.

Benemann J.R., Weare N.M. Hydrogen evolution by nitrogen fixing Anabaena cylindrica cultures // Science. – 1974. – Vol. 184. – P. 174.

Kufryk G. Advances in utilizing cyanobacteria for hydrogen production // Advances in Microbiology – 2013. – Vol. 3. – P. 60–8.

Manis S., Banerjee R. Comparison of biohydrogen production processes // Int. J. Hydrogen Energy. – 2008. – Vol. 33. – P. 279–86.

Hankamer B., Lehr F., Rupprecht J., Mussgnug J., Posten C., Kruse O. Photosynthetic biomass and H2 production by bioengineering to green algae: from bioreactor scale-up // Physiol Plantarum. – 2007. – Vol. 131. – P. 10–21.

Zhang X.K., Haskell J.B., Tabita F.R., Van B.C. Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F // J Bacteriol. – 1983. – Vol. 156. – P. 1118–22.

Horiuchi J., Kikuchi S., Kobayashi M., Kanno T, Shimizu T. Modeling of pH response in continuous anaerobic acidogenesis by an artificial neural network // Biochem Eng J. – 2001. – Vol. 9. – P. 199–204.

Show K.-Y., Lee D.-J., Chang J.-S. Bioreactor and process design for biohydrogen production // Bioresour Technol. – 2011. – Vol. 102. – P. 8524–33. https://doi.org/10.1016/j.biortech.2011.04.055

Yu J., Takahashi H. Biophotolysis-Based Hydrogen Productionby Cyanobacteria and Green Microalgae. In: A. Méndez-Vilas, Ed., Communicating Current Research and Educational Topics and Trends in Applied Microbiology // Formatex. – 2007. – Vol. 1. – P. 79–89.

Kossalbayev B.D., Tomo T., Zayadan B.K., Sadvakasova A.K., Bolatkhan K., Alwasel S., Allakhverdiev S.I. Determination of the potential of cyanobacterial strains for hydrogen production // International Journal of Hydrogen Energy. – 2020. – Vol. 45, No 4. – P. 2627–39. https://doi.org/10.1016/j.ijhydene.2019.11.164

Masirbaeva A.D., Baidyldaeva Z.A., Sadanov A.K., Baigonusova Z.A., Ultanbekova G.D. Study of nitrogen-fixing activity and competitive ability of nodule bacteria of the genus Rhizobium // Biological and medical series. – 2014. – Vol. 2. – P. 3252–62.

Uma L., Subramanian G. Effective use of cyanobacteria in effluent treatment.In proceedings of the national symposium on cyanobacterial N2 fixation. New Delhi: IARI, 1990. 437–44.

Zhakeeva M.B., Bekenova U.S., Zhumadilova Z.S., Shorabaev E.Z., Sadanov A.K. Study of ecological and trophic groups of soil microorganisms under alfalfa and soybeans using biological products of the Rizovit-AKS series // Success of modern natural science. – 2015. – Vol. 2. – P. 144–7.

Weissman J.C., Benemann J.R. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica // Appl Environ Microbiol. – 1977. – Vol. 33. – P. 123–31.

Benemann J.R., Miyamoto K., Hallenbeck P.C. Bioengineering aspects of biophotolysis // Enzyme Microbiol Technol. – 1980. – Vol. 2. – P. 103.

Bolatkhan K., Kossalbayev B.D., Zayadan B.K., Tomo T., Veziroglu V.T., Allakhverdiev S.I. Hydrogen production from phototrophic microorganisms: Reality and perspectives // International Journal of Hydrogen Energy. – 2019. – Vol. 44, No 12. – P. 5799–811. https://doi.org/10.1016/j.ijhydene.2019.01.092

Sundararaman M., Subramanian G., Averal H.I., Akbharsha M.A. Evaluation of the bioactivity of marine cyanobacteria on some biochemical parameters of rat serum // Phytotherapy Res. – 1996. – Vol. 10. – P. 9–12.

Kaushik B.D., Venkataraman G.S. Effect of algal inoculation on the yield and vitamin C content of two varieties of tomato // Plant Soil. – 1979. – Vol. 52. – P. 135–7.

Choudhary K.K. Occurrence of nitrogen fixing cyanobacteria during different stages of paddy cultivation // Bangladesh J Plant Taxon. – 2011. – Vol. 18. – P. 73–6.

Choudhury A.T.M.A., Kennedy I.R. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production // Biol Fertil Soils. – 2004. – Vol. 39. – P. 219–27.

Dey H.S., Bastia A.K. Cyanobacterial flora from rice growing areas of Mayurbhanj // Plant Sc Res. – 2008. – Vol. 30. – P. 22–6.

Khetkorn W., Rastogi R.P., Incharoensakdi A., Lindblad P., Datta M., Pandey A., Larroche C. Microalgal hydrogen production – A review // Bioresource Technology. – 2017. – Vol. 243. – P. 1194–206.

Gaffron H., Rubin J. Fermentative and photochemical production of hydrogen in algae // J Gen Physiol. – 1942. – Vol. 26, No 2. – P. 219–40.

Dutta D., Debojyoti D., Chaudhuri S, Bhattacharya S. Hydrogen production by cyanobacteria // Microbial cell factories. – 2005. – Vol. 4. – P. 36.

Melis A., Melnicki M.R. Integrated biological hydrogen production // Int J Hydrogen Energy. – 2006. – Vol. 31. – P. 1563–73.

Momirlan M., Veziroglu T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner // Int J Hydrogen Energy. – 2005. – Vol. 30. – P. 681–8.

Mathews J, Wang G. Metabolic pathway engineering for enhanced biohydrogen production // Int J Hydrogen Energy. – 2009. – Vol. 34. – P. 7404–16.

Das D., Veziroglu T.N. Advances in biological hydrogen production processes // Int J Hydrogen Energy. – 2008. – Vol. 33. – P. 6046–57.

Fani R., Gallo R., Liò P. Molecular evolution of nitrogen fixation: The evolutionary history of the nifD, nifK, nifE, and nifN genes // J Mol Evol. – 2000. – Vol. 51. – P. 1–11.

Miller R.W., Eady R.R. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase // Biochem J. – 1988. – Vol. 256. – P. 429–32.

Valladares A., Muro-Pastor A.M., Fillat M.F., Herrero A., Flores E. Constitutive and nitrogen-regulated promoters of the petH gene encoding ferredoxin: NADP+ reductase in the heterocyst-forming cyanobacterium Anabaena sp. // FEBS Lett. – 1999. – Vol. 449. – P. 159–64.

Hallenbeck P.C. Hydrogen Production by Cyanobacteria. In book: Microbial Technologies in Advanced Biofuels Production Publisher: Springer US, 2011.P.15–28.

Alberto A.E.F., Henrique C.J., Marcelo V., Alvarenga V., Nunes-Adriano N., Wagner A. Cyanobacterial nitrogenases: Phylogenetic diversity, regulation and functional predictions // Genetics and Molecular Biology. – 2017. – Vol. 40. – P. 261–75.

Suzuki I., Horie N., Sugiyama T., Omata T. Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation // J Bacteriol. – 1995. – Vol. 177. – P. 290–6.

Bergman M., Perewoska I., Kirilovsky D. Redox control of ntcA gene expression in Synechocystis sp. PCC 6803 // Plant Physiol. – 2001. – Vol. 125. – P. 969–81.

Thiel T., Lyons E.M., Erker J.C. Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis // J. Bacteriol. – 1997. – Vol. 179. – P. 5222–5.

Kentemich T., Danneberg G., Hundeshagen B., Bothe H. Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis // FEMS Microbiol Lett. – 1988. – Vol. 51. – P. 19–24.

Gudrun B., Caroline S., Lucas S., Hermann B. The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase // Archives of microbiology. – 2006. – Vol. 186. – P. 367–76.

Thiel T. Isolation and characterization of the vnfEN genes of the cyanobacterium Anabaena variabilis // J Bacteriol. – 1996. – Vol. 178. – P. 4493–9.

Paulette V. Hydrogenases and H+– reduction in primary energy conservation // Results and problems in cell differentiation. – 2008. – Vol. 45. – P. 223–52.

Tamagnini P., Leitao E., Oliveira P., Ferreira D., Pinto F., Harris D.J., Heidorn T., Lindblad P. Cyanobacterial hydrogenases: diversity, regulation and applications // FEMS Microbiology Reviews. – 2007. – Vol. 31. – P. 692–720.

Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria // Microbiology and molecular biology reviews: MMBR. – 2002. – Vol. 66. – P. 1–20.

Smith G.D., Ewart G.D., Tucker W. Hydrogen production by cyanobacteria // Int J Hydrogen Energy. – 1992. – Vol. 17. – P. 695–8.

Boison G., Schmitz O., Mikheeva L., Shestakov S., Bothe H. Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans // FEBS Lett. – 1996. – Vol. 394. – P. 153–8.

Boison G., Bothe H., Schmitz O. Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulan sand Anabaena variabilis monitored by RT-PCR // Curr Microbiol. – 2000. – Vol. 40. – P. 315–21.

Sheremetieva M.E., Troshina O.Y., Serebryakova L.T., Lindblad P. Identification of hox genes and analysis of their transcription in the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 growing under nitrate-limiting conditions // FEMS Microbiol Lett. – 2002. – Vol. 214. – P. 229–33.

Houchins J.P. The physiology and biochemistry of hydrogen metabolism in cyanobacteria // Biochim Biophys Acta. – 1984. – Vol. 768. – P. 227–55.

Schmitz O., Boison G., Salzmann H., Bothe H., Schutz K., Wang S.H., Happe T. HoxE – a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria // Biochim Biophys Acta. – 2002. – Vol. 1554. – P. 66–74.

Oxelfelt F., Tamagnini P., Lindblad P. Hydrogen uptake in Nostoc sp. strain PCC 73102 cloning and characterization of a hupSL homologue // Arch Microbiol. – 1998. – Vol. 169. – P. 267–74.

Weyman P., Brenda P., Thiel T. Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen // Applied and environmental microbiology. – 2008. – Vol. 74. – P. 2103–10.

Carrasco C.D., Buettner J.A., Golden J.W. Programed DNA rearrangment of a cyanobacterial hupL gene in heterocysts // Proc Natl Acad Sci. – 1995. – Vol. 92. – P. 791–5.

Tsygankov A.A. Nitrogen-fixing cyanobacteria: producents of hydrogen // Prikladnaia Biokhimiia I Mikrobiologiia. – 2007. – Vol. 43, No 3. – P. 279–88.

Carrasco C.D., Garcia J.S., Golden J.W. Programmed DNA rearrangement of a hydrogenase gene during Anabaena heterocyst development // BioHydrogen. – 1998. – Vol. – P. 203–7.

Gutthann F., Egert M., Marques A., Appel J. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803 // Biochim. Biophys. Acta-Bioenergetics. – 2007. – Vol. 1767. – P. 161–9.

Batyrova K., Hallenbeck P. Hydrogen production by a Chlamydomonas reinhardtii strain with inducible expression of photosystem II // International Journal of Molecular Sciences. – 2017. – Vol. 18. – P. 647.

Komenda J. Photosystem 2 photoinactivation and repair in the Scenedesmus cells treated with herbicides DCMU and BNT and exposed to high irradiance // Photosynthetica. – 1998. – Vol. 35. – P. 477–80.

Cournac L., Guedeney G., Peltier G., Vignais P.M. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex // J. Bacteriol. – 2004. – Vol. 186. – P. 1737–46.

Torimura M., Miki A., Wadano A., Kano K., Ikeda T. Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water // Journal of Electroanalytical Chemistry. – 2001. – Vol. 496. – P. 21–8.

Pisciotta J.M., Zou Y., Baskakov I.V. Light-dependent electrogenic activity of cyanobacteria // PLoS ONE. – 2010. – Vol. 5. – P. e10821.

Imafuku H., Katoh T. Intracellular ATP level and light-induced inhibition of respiration in a blue-green alga, Anabaena variabilis // Plant & Cell Physiology. – 1976. – Vol. 17. – P. 515–24.

Berg S.P., Krogmann D.W. Mechanism of KCN inhibition of photosystem I // J. Biol. Chem. – 1975. – Vol. 250. – P. 8957–62.

Hihara Y., Sonoike K., Kanehisa M., Ikeuchi M. DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 // Journal of bacteriology. – 2003. – Vol. 185. – P. 1719–25.

Boris V., Trubitsin V.V., Ptushenko O.A., Koksharova M.D., Mamedov L.A., Vitukhnovskaya I.A., Grigorev A.Y., Semenov A.N., Tikhonov E.P.R. Study of electron transport in the cyanobacterium Synechocystis sp. PCC 6803: Oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains // Biochimica et Biophysica Acta – Bioenergetics. – 2005. – Vol. 1708. – P. 238–49.

Carrieri D., Wawrousek K., Eckert C., Yu I., Maness P.-J. The role of bidirectional hydrogenases in cyanobacteria // Bioresour. Technol. – 2011. – Vol. 102. – P. 8368–77.

Alalayah W.M., Alhamed Y.A., Al-zahrani A., Edris G. Influence of culture parameters on biological hydrogen production using green algae Chlorella vulgaris // Rev Chim. – 2015. – Vol. 66. – P. 788–91.

Song W., Rashid N., Choi W., Lee K. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis // Bioresour Technol. – 2011. – Vol. 102. – P. 8676–81. https://doi.org/10.1016/j.biortech.2011.02.082.

Melis A. Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production // Energy Environ Sci. – 2012. – Vol. 5. – P. 5531–9. https://doi.org/10.1039/C1EE02514G.

Mizuno Y., Sato A., Watanabe K., Hirata A., Takeshita T., Ota S. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species // Bioresour Technol. – 2013. – Vol. 129. – P. 150–5. https://doi.org/10.1016/j.biortech.2012.11.030.

Axelsson R, Lindblad P. Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel // Appl. Environ. Microbiol. – 2002. – Vol. 68. – P. 444–7.

Rashid N., Lee K., Han J.I., Gross M. Hydrogen production by immobilized Chlorella vulgaris: optimizing pH, carbon source and light // Bioproc Biosyst Eng. – 2013. – Vol. 36. – P. 867–72. https://doi.org/10.1007/s00449-012-0819-9.

Liu J.-Z., Ge Y.-M., Xia S.-Y., Sun J.-Y., Mu J. Photoautotrophic hydrogen production by Chlorella pyrenoidosa without sulfur-deprivation // Int J Hydrogen Energy. – 2016. – Vol. 41. – P. 8427–32. https://doi.org/10.1016/j.ijhydene.2016.03.191

Boboescu I.Z., Gherman V.D., Lakatos G., Pap B., BıroT., Maroti G. Surpassing the current limitations of biohydrogen production systems: the case for a novel hybrid approach // Bioresour Technol. – 2016. – Vol. 204. – P. 192–201. https://doi.org/10.1016/j.biortech.2015.12.083.

Lopez-Hidalgo A.M., Alvarado-Cuevas Z.D., De LeonRodriguez A. Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up // Energy. – 2018. – Vol. 159. – P. 32–41. https://doi.org/10.1016/j.energy.2018.06.124.

Ramchandran S., Mitsui A. Recycling of hydrogen photoproduction system using an immobilized marine blue green algae Oscillatoria sp. Miami BG7, solar energy and seawater [abstract] // VII International Biotechnology Symposium. 1984. pp. 183–4.

Moezelaar R., Bijvank S.M., Stal L.J. Fermentation and Sulfur Reduction in the Mat-Building Cyanobacterium Microcoleus chthonoplastes // Appl Environ Microbiol. – 1996. – Vol. 62, No 5. – P. 1752–8.

Datta M., Nikki G., Shah V. Cyanobacterial hydrogen production // World J Microbiol Biotechnol – 2000. – Vol. 16. – P. 8–9.

Aoyama K., Uemura I., Miyake J., Asada Y. Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis // J Ferment Bioeng. – 1997. – Vol. 83. – P. 17–20.

Zayadan B.K., Kossalbayev B.D., Tomo T., Allakhverdiev S.I., Sadvakasova A.K., Bolatkhan K., Kakimova А. Study of promising heterocystic cyanobacterial strains for biohydrogen production // series of biological and medical. – 2020. – Vol. 3, No 339. – P. 41–8.

Lambert G.R., Daday A., Smith G.D. Hydrogen evolution from immobilized cultures of the cyanobacterium Anabaena cylindrica B629 // FEBS Lett. – 1979. – Vol. 101, No 1. – P. 125–8.

Radway J.C., Yozua B.A., Benemann J.R., Chini Zitelli G., Malda J., Babcock R.W., Jr, Tredici M.R. Evaluation of a near-horizontal tubular photobioreactor system in Hawaii [abstracts] 8th International Conference on Applied Algology: Montecassini, Italy. 1999.

Vargas S.R., Santos P.V., Zaiat M., Calijuri M.C. Optimization of biomass and hydrogen production by Anabaena sp. (UTEX 1448) in nitrogen-deprived cultures // Biomass and Bioenergy. – 2018. – Vol. 111. – P. 70–6.

Cassier-Chauvat C., Veaudor T., Chauvat F. Advances in the function and regulation of hydrogenase in the cyanobacterium Synechocystis PCC6803 // Int. J. Mol. Sci. – 2014. – Vol. 15. – P. 19938–51.

Nyberg M., Heidorn T., Lindblad P. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system // Journal of Biotechnology. – 2015. – Vol. 215. – P. 35–43.

Jeffries T.W., Timourian T.H., Ward R.L. Hydrogen Production by Anabaena cylindrica: Effects of Varying Ammonium and Ferric Ions, pH, and Light // Applied and environmental microbiology. – 1978. – Vol. 1 – P. 704–10.

Tsygankov A.A., Borodin V.B., Rao K.K., Hall D.O. H2 photoproduction by batch culture of Anabaena variabilis ATCC 29413 and its mutant PK84 in a photobioreactor // Biotechnol Bioeng. – 1999. – Vol. 64, No 6. – P. P. 709-15.

Shah V., Garg N., Madamwar D. Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production // Folia Microbiol (Praha). – 2003. – Vol. 48(1). – P. 65-70.

Hallenbeck P.C., Kochian L.V., Weissmann J.C., Benemann J.R. Solar energy conversion with Hydrogen producing cultures of the blue green alga, Anabaena cylindrica // Biotechnology and Bioengineering Symposium. – 1978. – Vol. 8. – P. 283–97.

Bakonyi P., Kumar G., Belafi-Bak o K., Kim S.-H., Koter S., Kujawski W., et al. A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen // Bioresour Technol. – 2018. https://doi.org/10.1016/j.biortech.2018.09.020.

Rashid N., Lee K., Han J.I,. Gross M. Hydrogen production by immobilized Chlorella vulgaris: optimizing pH, carbon source and light // Bioproc Biosyst Eng. – 2013. – Vol. 36. – P. 867–72. https://doi.org/10.1007/s00449-012-0819-9.

Qiao H., Wang G. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01 // Chin J Oceanol Limnol. – 2009. – Vol. 27. – P. 762–8. https://doi.org/10.1007/s00343-009-9216-x

Ernst A., Kerfin W., Spiller H., Boger P. External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum // Zeitschrift fur Naturforschung. – 1979. – Vol. 34. – P. 820–5.

Загрузки

Как цитировать

Қамшыбаева, Г. ., Қосалбаев, Б. ., Садвакасова A. ., & Заядан , Б. . (2022). ПЕРСПЕКТИВЫ И ПРОБЛЕМЫ ПРОИЗВОДСТВА ВОДОРОДА ЦИАНОБАКТЕРИЯМИ ANABAENA . Вестник КазНУ. Серия биологическая, 92(3), 55–74. https://doi.org/10.26577/eb.2022.v92.i3.05