А ВИРУС SARS-CoV-2: ВЫДЕЛЕНИЕ, КУЛЬТИВИРОВАНИЕ, ТЕРМОСТАБИЛЬНОСТЬ, ИНАКТИВАЦИЯ И ПАССИРОВАНИЕ
DOI:
https://doi.org/10.26577/eb.2022.v90.i1.07Ключевые слова:
SARS-CoV-2, культуры клеток, выделение, культивирование, термостабильность, инактивация, пассированиеАннотация
Коронавирусы – это большое семейство РНК-содержащих вирусов, способных инфицировать человека и ряд видов животных. В настоящее время известно о циркуляции среди населения нескольких видов коронавирусов, которые, как правило, вызывают заболевания верхних дыхательных путей и легких со средней тяжестью. К этому списку прибавилась новая коронавирусная инфекция COVID-19 (SARS-CoV-2). Вирус быстро распространился во все страны мира. В последнее время в Казахстане данная инфекция наблюдается с ярко выраженной пневмонией среди населения.
При разработке вакцины нам пришлось работать с живым вирусом SARS-CoV-2. Следует отметить, что при работе с живым вирусом мы столкнулись с некоторыми вопросами касающихся биологической и физико-химических свойств вируса, которые остались вне внимания ученых мира. В связи с этим, в этих исследованиях нами были изучены некоторые физико-химические и биологические свойства казахстанского штамма вируса SARS-CoV-2, выделенного от больного пациента, заболевшего новой коронавирусной инфекцией COVID-19, такие как термостабильность (сохраняемость), инактивация вируса различными концентрациями формальдегида при различных температурно-временных режимах и пассирование вируса в культуре клеток.
Проведены исследования по поиску дополнительных биологических моделей, чувствительных к вирусу SARS-CoV-2 и используемых in vitro. Установлено, наиболее чувствительными к вирусу SARS-CoV-2 были культуры клеток обезьян и свиней, в которых вирус активно репродуцировался.
Были изучены влияние условий хранения образцов нуклеиновых кислот вируса SARS-CoV-2, а также влияние условий окружающей среды к самому вирусу SARS-CoV-2. Результаты проведенных нами исследований показали, что процесс замораживания при температуре минус 70оС и размораживания при комнатной температуре (20-22 оС) не оказывает заметного влияния на качественный характер цитопатогенности, но оказывает негативное влияние на сохранность титра вируса.
Данные о влиянии химических факторов при работе с возбудителями болезней необходимы для создания условий биологической безопасности для персонала и окружающей среды, а также конструирования технологий изготовления биологических препаратов диагностического и профилактического назначения. В данном исследовании нами изучено влияние формальдегида к вирусу. Полученные результаты показывают, что инактивация вируса Sars-CoV-2 с помощью формалина зависит от концентрации формальдегида, температуры реакции, времени инкубации.
Библиографические ссылки
Aboubakr, H. A., Sharafeldin, T. A., & Goyal, S. M. (2020). Stability of SARS-CoV-2 and other coronaviruses in the en- vironment and on common touch surfaces and the influence of climatic conditions: A review. Transboundary and emerging diseases, 10.1111/tbed.13707. Advance online publication. https://doi.org/10.1111/tbed.13707
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020). The proximal origin of SARS-CoV-2. Nat Med. vol. 26,4: 450-452. doi: 10.1038/s41591-020-0820-9.
Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.‐L., Chan M.C.W., Poon L.L.M. (2020). Stability of SARS‐ CoV‐2 in different environmental conditions. The Lancet Microbe, 10.1016/S2666-5247(20)30003-3.
Chu H., Chan J.F., Yuen T.T, Shuai H., Yuan Sh, Wang Y., Hu B., Yip C.C, Tsang J.O., Huang X., Chai Y., Yang D., Hou Y., Chik K.K, Zhang X., Fung A.Y., Tsoi H., Cai J., Chan W., Ip J.D, Chu A.W, Zhou J., Lung D.Ch, Kok K., To K.K., Tsang O.T., Chan K.H., Yuen K (2020). Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS- CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study The Lancet Microbe.2666-5247. doi.org/10.1016/S2666-5247(20)30004-5.
Corman Victor M, Landt Olfert, Kaiser Marco, Molenkamp Richard, Meijer Adam, Chu Daniel KW, Bleicker Tobias, Brünink Sebastian, Schneider Julia, Schmidt Marie Luisa, Mulders Daphne GJC, Haagmans Bart L, van der Veer Bas, van den Brink Sharon, Wijsman Lisa, Goderski Gabriel, Romette Jean-Louis, Ellis Joanna, Zambon Maria, Peiris Malik, Goossens Herman, Reuske Chantal, Koopmans Marion PG, Drosten Christian (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25(3):pii=2000045. doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
Darnell M.E., Subbarao K., Feinstone S.M., & Taylor D.R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS‐CoV. Journal of Virological Methods, 121(1), 85–91. 10.1016/j.jviromet.2004.06.006
Duan S.M., Zhao, X.S., Wen R.F., Huang J.J., Pi G.H., Zhang S.X. SARS Research Team. (2003). Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomedical and Environmental Sciences: BES, 16(3), 246.
Duque H, Marshall RL, Israel BA, Letchworth GJ (1989) Effects of formalin inactivation on bovine herpes virus-1 glyco- proteins and antibody response elicited by formalin-inactivated vaccines in rabbits. Vaccine 7: 513–520. pmid:2481909
Edward I Patterson, Tessa Prince, Enyia R Anderson, Aitor Casas-Sanchez, Shirley L Smith, Cintia Cansado-Utrilla, Tom Solomon, Michael J Griffiths, Álvaro Acosta-Serrano, Lance Turtle, Grant L Hughes (2020). Methods of Inactivation of SARS- CoV-2 for Downstream Biological Assays. The Journal of Infectious Diseases. vol. 222. 1462–1467. doi.org/10.1093/infdis/jiaa507
Furuya Y, Regner M, Lobigs M, Koskinen A, Mullbacher A, et al. (2010) Effect of inactivation method on the cross- protective immunity induced by whole 'killed' influenza A viruses and commercial vaccine preparations. J Gen Virol 91: 1450–1460. pmid:20147516
Garrett A. Perchetti, Meei-Li Huang, Vikas Peddu, Keith R. Jerome, Alexander L(2020). Greninger Stability of SARS- CoV-2 in Phosphate-Buffered Saline for Molecular Detection. Journal of Clinical Microbiology. vol. 58 (8) e01094-20; doi.org/ 10.1128/JCM.01094-20
Harrison A.G., Lin T. and Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. //Trends in Immunol- ogy 2020. Vol. 41, No. 12 doi.org/10.1016/j.it.2020.10.004
Iris Delrue, Dieter Verzele, Annemieke Madder & Hans J Nauwynck (2012) Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges, Expert Review of Vaccines, 11:6, 695-719, DOI: 10.1586/erv.12.38
Islam, M. R., Hoque, M. N., Rahman, M. S., Alam, A., Akther, M., Puspo, J. A., Akter, S., Sultana, M., Crandall, K. A., & Hossain, M. A. (2020). Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci Rep . 10, 14004 . doi.org/10.1038/s41598-020-70812-6
Junejo, Y., Ozaslan, M., Safdar, M., Khailany, R. A., Rehman, S., Yousaf, W., & Khan, M. A. (2020). Novel SARS- CoV-2/COVID-19: Origin, pathogenesis, genes and genetic variations, immune responses and phylogenetic analysis. Gene reports, 20, 100752. https://doi.org/10.1016/j.genrep.2020.100752
Jureka, A. S., Silvas, J. A., & Basler, C. F. (2020). Propagation, Inactivation, and Safety Testing of SARS-CoV-2. Viruses, 12(6), 622. https://doi.org/10.3390/v12060622
Kaur, N., Singh, R., Dar, Z., Bijarnia, R. K., Dhingra, N., & Kaur, T. (2020). Genetic comparison among various corona- virus strains for the identification of potential vaccine targets of SARS-CoV2. Infection, genetics and evolution: journal of molecu- lar epidemiology and evolutionary genetics in infectious diseases, 104490. Advance online publication. https://doi.org/10.1016/j. meegid.2020.104490
Khalaf K, Papp N, Chou JT-T, Hana D, Mackiewicz A and Kaczmarek M (2020) SARS-CoV-2: Pathogenesis, and Ad- vancements in Diagnostics and Treatment. Front. Immunol. 11:570927. doi: 10.3389/fimmu.2020.570927
Kissling RE, Reese DR (1963) Anti-Rabies Vaccine of Tissue Culture Origin. J Immunol 91: 362–368. pmid:14071026
Kumar, S., Nyodu, R., Maurya, V. K., & Saxena, S. K. (2020). Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19): Epi- demiology, Pathogenesis, Diagnosis, and Therapeutics , 23–31. https://doi.org/10.1007/978-981-15-4814-7_3
Lau, S.K.P., Chan, J.F.W (2015). Coronaviruses: emerging and re-emerging pathogens in humans and animals. Virol J . vol. 31,4 1-13. doi.org/10.1186/s12985-015-0432-z
Lau SY, Wang P, Mok BW, Zhang AJ, Chu H, Lee AC, Deng S, Chen P, Chan KH, Song W, Chen Z, To KK, Chan JF, Yuen KY, Chen H (2020). Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Microbes Infect. vol. 9(1). 837-842. doi: 10.1080/22221751.2020.1756700.
Laude, H. (1981). Thermal inactivation studies of a coronavirus, transmissible gastroenteritis virus. Journal of General Virology, 56(2), 235–240. 10.1099/0022-1317-56-2-235
Lim YX, Ng YL, Tam JP, Liu DX (2016). Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. vol. 4,3 26. 25 doi:10.3390/diseases4030026.
Li, L., Li, X., Guo, Z., Wang, Z., Zhang, K., Li, C., Wang, C., & Zhang, S. (2020). Influence of Storage Conditions on SARS-CoV-2 Nucleic Acid Detection in Throat Swabs. The Journal of infectious diseases, 222(2), 203–205. https://doi.org/10.1093/ infdis/jiaa272
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. vol. 22;395(10224):565-574. doi: 10.1016/S0140-6736(20)30251-8.
Mackenzie JS, Smith DW (2020). COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don't. Microbiol Aust. MA20013. doi:10.1071/MA20013
Maukayeva, S., & Karimova, S. (2020). Epidemiologic character of COVID-19 in Kazakhstan: A preliminary report. Northern clinics of Istanbul, 7(3), 210–213. https://doi.org/10.14744/nci.2020.62443
Malaiyan, J, Arumugam, S, Mohan, K, Gomathi Radhakrishnan, G (2020). An update on the origin of SARS‐CoV‐2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O‐linked glycan residues. J Med Virol. . vol.1– 7. https://doi.org/10.1002/jmv.26261
Mercatelli D., Giorgi F.M (2020). Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Frontiers in Micro- biology. vol..11,. P.1800 https://doi.org/10.3389/fmicb.2020.01800
Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, et al. (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279: 6235–6243. pmid:14638685
Murphey-Corb M, Martin LN, Davison-Fairburn B, Montelaro RC, Miller M, et al. (1989) A formalin-inactivated whole SIV vaccine confers protection in macaques. Science 246: 1293–1297. pmid:2555923
Ogra PL, Ogra SS (1973) Local antibody response to poliovaccine in the human female genital tract. J Immunol 110: 1307–1311. pmid:4633297
Paggiaro AO, Carvalho VF, Gemperli R (2021). Effect of different human tissue processing techniques on SARS-CoV-2 inactivation-review. Cell Tissue Bank. vol. 22(1):1-10. doi:10.1007/s10561-020-09869-6
Peiris M, Yen HL (2020). Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 583(7818):834-838. doi: 10.1038/s41586-020-2342-5.
Peterson DL, Paul DA, Lam J, Tribby II, Achord DT (1984) Antigenic structure of hepatitis B surface antigen: iden- tification of the "d" subtype determinant by chemical modification and use of monoclonal antibodies. J Immunol 132: 920–927. pmid:6197478
Rabenau, H. F. , Cinatl, J. , Morgenstern, B. , Bauer, G. , Preiser, W. , & Doerr, H. W. (2005). Stability and inactivation of SARS coronavirus. Medical Microbiology and Immunology, 194(1–2), 1–6. 10.1007/s00430-004-0219-0
Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42: 405–426. pmid:16006601
Reed, L. J. & Muench, H. A (1938). Simple Method Of Estimating Fifty Per Cent Endpoints12. American Journal of Epi- demiology . 27, 493–497, doi.org/10.1093/oxfordjournals.aje.a118408.
Sanitarno-e`pidemiologicheskie trebovaniya k laboratoriyam, ispol`zuyushhim potencial`no opasny`e ximicheskie i bio- logicheskie veshhestva. Prikaz Ministra zdravooxraneniya Respubliki Kazakhstan ot 8 sentyabrya 2017 goda № 684 [Sanitary and epidemiological requirements for laboratories using potentially dangerous chemical and biological substances. Order of the Minister of Health of the Republic of Kazakhstan dated September 8, 2017 No. 684]
Saknimit, M. , Inatsuki, I. , Sugiyama, Y. , & Yagami, K. I. (1988). Virucidal efficacy of physic chemical treatments against coronaviruses and parvoviruses of laboratory animals. Experimental Animals, 37(3), 341–345. 10.1538/expanim1978.37.3_341
Scheller, C., Krebs, F., Minkner, R., Astner, I., Gil-Moles, M., & Wätzig, H. (2020). Physicochemical properties of SARS- CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis, 41(13-14), 1137–1151. https://doi.org/10.1002/elps.202000121
Schioler KL, Samuel M, Wai KL (2007) Vaccines for preventing Japanese encephalitis. Cochrane Database Syst Rev: CD004263. pmid:17636750
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., … Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science (New York, N.Y.), 368(6494), 1016–1020. https://doi.org/10.1126/science. abb7015
Shu-Miaw Chaw, Jui-Hung Tai, Shi-Lun Chen, Chia-Hung Hsieh, Sui-Yuan Chang, Shiou-Hwei Yeh, Wei-Shiung Yang, Pei-Jer Chen, Hurng-Yi Wang (2020) The origin and underlying driving forces of the SARS-CoV-2 outbreak. J Biomed Sci. vol. 27-73. doi.org/10.1186/s12929-020-00665-8
Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, WHO/WHE/CPI/2019.20 Guidance on regulations for the transport of infectious substances 2019– 2020. https://apps.who.int/iris/ bitstream/handle/10665/325884/WHO-WHE-CPI-2019.20-eng.pdf?ua=1
Su, S., Wong, G., Shi, W., Liu, J., Lai, A., Zhou, J., Liu, W., Bi, Y., & Gao, G. F (2016). Epidemiology, genetic recom мbination, and pathogenesis of coronaviruses. Trends Microbiol. vol. 24,6. 490-502. doi:10.1016/j.tim.2016.03.003
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, nwaa036. https://doi.org/10.1093/nsr/nwaa036
Tano Y, Shimizu H, Martin J, Nishimura Y, Simizu B, et al. (2007) Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains. Vaccine 25: 7041–7046. pmid:17825459
Takada A, Matsushita S, Ninomiya A, Kawaoka Y, Kida H (2003) Intranasal immunization with formalin-inactivated virus vaccine induces a broad spectrum of heterosubtypic immunity against influenza A virus infection in mice. Vaccine 21: 3212– 3218. pmid:12804850
To KK, Hung IF, Chan JF, Yuen KY (2013). From SARS coronavirus to novel animal and human coronaviruses. J Thorac Dis. vol. 90,4 1910-7. doi:10.1128/JVI.02685-15.
V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2020). Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol . 19(3), 155–170. doi.org/10.1038/s41579-020-00468-6
Wang, Zhaohui Qian, Jie Cui, Jian Lu (2020) , On the origin and continuing evolution of SARS-CoV-2. National Science Review. vol. 7. 1012–1023 doi.org/10.1093/nsr/nwaa036
Wang, H., Li, X., Li, T., Zhang, S., Wang, L., Wu, X., & Liu, J. (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 39(9), 1629–1635. https://doi.org/10.1007/s10096-020-03899-4
Weiss, Susan R, and Sonia Navas-Martin (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and molecular biology reviews. vol. 69,4. 635-64. doi:10.1128/MMBR.69.4.635- 664.2005
Welch SR, Davies KA, Buczkowski H, Hettiarachchi N, Green N, Arnold U, Jones M, Hannah MJ, Evans R, Burton C, Burton JE, Guiver M, Cane PA, Woodford N, Bruce CB, Roberts ADG, Killip MJ. (2020). Analysis of inactivation of SARS-CoV-2 by specimen transport media, nucleic acid extraction reagents, detergents, and fixatives. J Clin Microbiol. 58:e01713-20. https://doi. org/10.1128/JCM.01713-20
Werzberger A, Mensch B, Kuter B, Brown L, Lewis J, et al. (1992) A controlled trial of a formalin-inactivated hepatitis A vaccine in healthy children. N Engl J Med 327: 453–457. pmid:1320740
Wilton T, Dunn G, Eastwood D, Minor PD, Martin J (2014) Effect of formaldehyde inactivation on poliovirus. J Virol. vol;88(20):11955-64. doi: 10.1128/JVI.01809-14
Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong WHO Laboratory biosafety guidance related to the novel coronavirus (2019-nCoV). https://www.who.int/docs/default-source/coronavi- ruse/laboratory-biosafety-novel-coronavirus-version-1-1.pdf?sfvrsn=912a9847_2
Yao P, Zhang Y, Sun Y, Gu Y, Xu F, Su B, Chen C, Lu H, Wang D, Yang Z, Niu B, Chen J, Xie L, Chen L, Zhang Y, Wang H, Zhao Y, Guo Y, Ruan J, Zhu Z, Fu Z, Tian D, An Q, Jiang J, Zhu H. (2020). Isolation and Growth Characteristics of SARS-CoV-2 in Vero Cell. Virol Sin. 35(3):348-350. doi:10.1007/s12250-020-00241-2.
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY (2020). Zoonotic origins of human coronaviruses. Int J Biol Sci. vol.16(10):1686-1697. doi:10.7150/ijbs.45472.