Short term effects of crude oil, vanadium and nickel intoxication on rats liver antioxidant defence system

Authors

  • K. E. Mahmoud Al-Farabi Kazakh National University, Kazakhstan, Almaty; Minoufi ya University, Minoufi ya, Egypt;
  • T. M. Shalahmetova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • B. A. Umbayev Al-Farabi Kazakh National University, Kazakhstan, Almaty
        54 53

Keywords:

crude oil, vanadium, nickel, antioxidant enzymes, lipid peroxidation, rat,

Abstract

Lipid peroxidation (LPO) and alterations in cellular systems protecting against oxidative damage were determined in the liver of male albino rats, 4 weeks after intraperitoneal (i.p) injection of 0.5 ml/kg bw of crude oil and/or oral consumption of 150 mg V /L or 180 mg Ni /L. After subjecting the rats to crude oil or vanadium or nickel, LPO level and serum alanine-(ALT) and aspartate-(AST) transaminases activities were raised (p<0.01) but the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) activities were decreased (p<0.01) signifi cantly. Signifi cant increase (p<0.001) was observed in the glutathione content in nickel-treated rats whereas glutathione content in crude oil or vanadium-treated rats was signifi cantly (p<0.001) inhibited. Glutathione-S-transferase (GST) activity was found to be increased (p<0.001) after crude oil exposure while vanadium or nickel exposure decreased (p<0.001) the GST activity. In conclusion, crude oil, vanadium and nickel treatments caused profound cell damage as indicated by increased LPO in liver and leakage of intracellular enzymes, ALT and AST to the blood; concomitant exposure to crude oil and vanadium exacerbated this effect in a synergistic manner. Stimulation of GSH synthesis by administration of nickel reduced crude oil induced toxicity. The toxicity induced by simultaneous administration of vanadium, nickel and crude oil is less than single toxicity of these metals and crude oil.

References

1 International Agency for Research on Cancer (IARC). Occupational Exposures in Petroleum Refining; Crude Oil and Major Petroleum Fuels. –
1989. – V.45.

2 Agency for toxic substances and disease registry (ATSDR). Toxicological profi le for total petroleum hydrocarbons (TPH): Potential for human exposure. U.S. department of health and human services. – Atlanta, 1999. www.atsdr.cdc.gov/ToxProfi les/tp123.pdf

3 Diker U. Oil pollution toxicity assessment:M.Sc. thesis / Istanbul technical university & Institute of science and technology. – Istanbul, 2007.

4 Madany I.M., Raveendran E. Polycyclic aromatic hydrocarbons, nickel and vanadium in air particulate matter in Bahrain during the burning of
oil fields in Kuwait // Sci. Total Environ. – 1992. – V. 116. – P. 281-289.

5 Falahi-Ardakani A. Contamination of environment with heavy metals emitted from automotives // Ecotoxicol. Environ. Saf. – 1984. – V.8. – P. 152-161.

6 Sokolov S.M. Methodological aspects of assessing atmospheric contamination with metal aerosols in the vicinity of thermal power complexes //J. Hyg. Epidemiol. Microbiol. Immunol. – 1986. – V.30. – P. 249-254.

7 Ayres R.U. Toxic heavy metals: materials cycle optimization // Proc.Natl.Acad.Sci. USA. –1992. – V. 89. – P. 815-820.

8 Mahmoud K.E., Shalahmetova T.M., Deraz Sh., Umbayev B. Combined effect of vanadium and nickel on lipid peroxidation and selected parameters of antioxidant system in liver and kidney of male rat // Afr. J. Biotechnol. – 2011. – V. 10. – № 79. – P. 18319-18325.

9 Burlakova E.B., Аlesenko A.V., Molochkina E.M., Palmina N.P., Khrapova N.G. Bioantioxidants for radiation damage and malignant growth. –Moscow: Nauka. - 1975. – 214 p.

10 Marklund S. Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fl uids // Acta Physiol. Scand. Suppl. – 1980. – V. 492. – P. 19 – 23.

11 Aebi H. Catalase in vitro // Methods Enzymol. – 1984. – V. 105. – P. 121-126.

12 Baker M.A., Cerniglia G.J., Zaman A.Microtiter plate assay for the measurement of glutathione and glutathione disulfi de in large numbers
of biological samples // Anal.Biochem. – 1990. – V.190. – P. 360 – 365.

13 Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation // J. Biol. Chem. – 1974. – V. 249. – P. 7130–7139.

14 Landu S., Everitt B.S. A handbook of statistical analyses using SPSS. – London: Chapman and Hall / CRC press LLC, 2004. – P. 337.

15 Raza M., Al-ShabanahO.A., El-Hadiyah T.M., Al-Majed A.A. Effect of prolonged vigabatrin treatment on hematological and biochemical
parameters in plasma, liver and kidney of Swiss albino mice // Sci.Pharmaceut. – 2002. – V. 70. - P.135-145.

16 Thompson K.H., McNeill J.H. Effect of vanadyl sulfate feeding on susceptibility to peroxidative change in diabetic rats // Res. Commun.
Chem.Pathol.Pharmacol. – 1993.- V. 80. - P. 187-200.

17 Kechrid Z., Dahdouh F., DjabarR.M., Bouzerna N. Combined effect of water contamination with cobalt and nickel on metabolism of albino
(wistar) rats // Iran J. Environ. Health Sci. Eng. –2006. - V. 3. – P. 65-69.

18 Costa M., Salnikow K., Cosentino S., Klein C.B., Huang X., Zhuang Z. Molecular mechanism of nickel carcinogenesis // Environ. Health. Perspect. –1994. – V. 102, 3. – P. 127-130.

19 Adedara I.A., Teberen R., Ebokaiwe A.P., Ehwerhemuepha T., Farombi E.O. Induction of oxidative stress in liver and kidney of rats exposed to Nigerian bonny light crude oil // Environ. Toxicol. –2011. – Doi: 10.1002/tox.20660.

20 Pari L., Prasath A. Effi cacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats // Chem. Biol. Interact. - 2008.- V. 173. – P. 77-83.

21 Sidhu P., Garg M.L., Dhawan D.K. Protective role of zinc in nickel induced hepatotoxicity in rats // Chem. Biol. Interact. – 2004. – Vol. 150. – P. 199-209.

22 Elshaari F.A, Elshaari FA, Hadad G., Barassi I.F. Effect of Sodium Vanadate on Liver Function of Experimental Rats // Journal of Basic Medical and Allied Sciences (JBMAS). – 2011. – V. 1. – P. 5-10.

23 Russanov E., Zaporowska H., Ivancheva E., Kirkova M., Konstantinova S. Lipid peroxidation and antioxidant enzymes in vanadate-treated rats // Comp.Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. –1994. – V. 107. – P. 415-421.

24 Misra M., Rodriguez R.E., Kasprazak K.S. Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense system // Toxicol. - 1990. – V. 64. – P. 1-17.

25 Freeman B.A., Crapo J.D. Biology of disease: free radicals and tissue injury // Lab. Invest. – 1982. - V. 47. – № 5. – P. 412-426.

26 Bucker E.R., Martin S.E. Superoxide dismutase activity in thermally stressed Staphylococcus aureus // Appl. Environ. Microbiol. – 1981. – V. 41. – P. 449-454.

27 Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases // Cell Mol. Life Sci. – 2004. – V. 61. – № 2. – P. 192-208.

28 Bray T.M., Taylor C.G. Tissue glutathione, nutrition, and oxidative stress // Can. J. Physiol. Pharmacol. – 1993. – V. 71. – № 9. – P. 746-751.

29 Chen L.H., Lin S.M. Modulation of acetaminophen-induced alterations of antioxidant defense enzymes by antioxidants or glutathione
precursors in cultured hepatocytes // Biochem. Arch. – 1977. – V. 13. – № 2. – P. 113-125.

30 Strange R.C., Fryer A.A. The glutathione-Stransferases: infl uence of polymorphism on cancer susceptibility // IARC Sci. Publ. – 1999. – V. 148. – P. 231-249.

31 Xiao N.W., Liu X.H., Li W., Ge F. Effect of herbicide acetochlor on cytochrome P450 monooxygenases and GST of earthworms
Eiseniafetida // J. Environ. Sci. (China). – 2006. – V.18. – № 1. – P. 135-140.

Downloads

How to Cite

Mahmoud, K. E., Shalahmetova, T. M., & Umbayev, B. A. (2015). Short term effects of crude oil, vanadium and nickel intoxication on rats liver antioxidant defence system. Experimental Biology, 54(2), 39–44. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/258

Issue

Section

HISTOLOGY, CYTOLOGY, CELL BIOLOGY