EVALUATION OF EFFECT OF EXOGENOUS MOLYBDENUM AND TUNGSTEN ON SEED GERMINABILITY AND ON SYMPTOMS OF VIRUS INFECTION IN PLANTS

Authors

  • D.S. Tokasheva Karaganda Buketov University, 28, University street, Karaganda, Kazakhstan
  • R.T. Omarov L.N. Gumilyov Eurasian National University, 13, Kazhymukan street, Astana, Kazakhstan

DOI:

https://doi.org/10.26577/eb.2024.v98.i1.06

Abstract

Molybdenum is a key trace element for plants as it is an important component of the active center of several molybdenum containing enzymes. Molybdenum deficiency in young plants is characterized by chlorosis, leaf distortion, grayish coloration. The symptoms in old plants can be observed in young leaf tissues with typical lamina deformation, loss of the correct shape-whiplash tail and meristem necrosis.  The soils in the Republic of Kazakhstan suffer from the molybdenum shortage, which makes plants more sensible to the abiotic and biotic stresses. This topic is relevant for the development of agriculture in the territory of the Republic of Kazakhstan. Tungsten as a chemical antagonist of molybdenum can replace molybdenum in the active center of molybdoenzymes making them inactive. Tungsten also has a toxic effect.  The research results of this experimental work can be interpreted and replicated for economically significant agricultural crops such as peppers, potatoes, eggplant and  tomato.

References

Evans Harold J. Role of molybdenum in plant nutrition // Soil Sci. – 1956. - Vol. 81, No 3. – P. 199-208.

Arnon D. I. and Stout P. R. Molybdenum as an essential element for higher plants // Plant Physiol. – 1939. - Vol. 14, No 3. – P. 599-602. doi: https://doi.org/10.1104/pp.14.3.599

Burgmayer S. J. N. and Stiefel E. I. Molybdenum enzymes, cofactors, and systems: the chemical uniqueness of molybdenum // J. Chem. Educ. – 1985. – Vol. 62, No 11. – P. 943-953.

Schwarz G., Mendel R. R., and Ribbe M. W. Molybdenum cofactors, enzymes and pathways // Nature. – 2009. – Vol. 460, No 7257. – P. 839-847. https://doi.org/10.1038/nature08302

Walker-Simmons M., Kudrna D. A. and Warner, R. L. Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley // Plant Physiol. – 1989. – Vol. 90, No 2. – P. 728-733. https://doi.org/10.1104/pp.90.2.728

Zimmer W. and Mendel R. Molybdenum metabolism in plants // Plant boil. – 1999. – Vol.1, No 02. – P. 160-168. DOI: 10.1055/s-2007-978502

Mendel R. R. and Schwarz G. Molybdenum cofactor biosynthesis in plants and humans // Coord. Chem. Rev. – 2011. – Vol. 255, No 9-10. – P. 1145-1158. https://doi.org/10.1016/j.ccr.2011.01.054

Hille R. Molybdenum and tungsten in biology // Trends Biochem. Sci. – 2002. – Vol. 27, No 7. – P. 360-367.

Strigul N., Galdun C., Vaccari, et al. Influence of speciation on tungsten toxicity // Desalination. – 2009. – Vol. 248, No 1-3. – P. 869-879. https://doi.org/10.1016/j.desal.2009.01.016

Adamakis I. S., Panteris. E and Eleftheriou E. P. Tungsten Toxicity in Plants // Plants. – 2012. – Vol. 1, No 2. – P. 82-99. doi:10.3390/plants1020082

Битюцкий Н.П. Микроэлементы высших растений. Санкт- Петербург: Санкт-Петербургский государственный университет. 2020.

Broadley M., Brown P., Cakmak I., Rengel Z., and Zhao F. Function of Nutrients. Marschner’s Mineral Nutrition of Higher Plants. London: Academic Press, 2012. doi:10.1016/b978-0-12-384905-2.00007-8

Прищепчик Ю.В, Аверина Н.Г. Влияние биопрайминга семян льна 5-аминолевулиновой кислотой на энергию прорастания и всхожесть. Молекулярные, мембранные и клеточные основы функционирования биосистем: материалы Международной научной конференции и Двенадцатого съезда Белорусского общественного объединения фотобиологов и биофизиков. Минск. 2016: с. 76 - 79.

Prashar N., Bakshi M., Shilpa C., et al. Role of micro-nutrients in fruit production: A review // Pharm. Innov. J. – 2022. – Vol. 11, No 6. – P. 1158-1164.

Shalakhmetova G.A., Nayekova S., Sagi M., et al. The effect of pre-sowing saturation with molybdenum and presence of nitrate on the allantois content in sprouted wheat grain // Int. J. Biol. Chem. – 2018. – Vol. 11, No 1. – P. 41-48. https://doi.org/10.26577/ijbch-2018-1-312

Chamizo-Ampudia A., Sanz-Luque E., Llamas A., et al. Nitrate reductase regulates plant nitric oxide homeostasis // Trends Plant Sci. – 2017. – Vol. 22, No 2. – P. 163-174. https://doi.org/10.1016/j.tplants.2016.12.001

Rana M.S., Bhantana P., Sun X., et al. Molybdenum as an Essential Element for Crops: An Overview // Biomed. J. Sci. Tech. Res. – 2020. – Vol. 24, No 5. – P. 18535–18547. DOI: 10.26717/BJSTR.2020.24.004104

Tokasheva, D. S., Nurbekova, Z. A., et al. Molybdoenzyme Participation in Plant Biochemical Processes // Eurasian J. Appl. Biotech. – 2021. – Vol. 1.

Kundu, T. K., Velayutham, M. and Zweier, J. L. Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation // Biochemistry. – 2012. – Vol. 51, No 13. – P. 2930-2939. https://doi.org/10.1021/bi3000879

Yergaliyev T.M., Nurbekova Z., Mukiyanova G., et al. The involvement of ROS producing aldehyde oxidase in plant response to Tombus virus infection // Plant Physiol. Biochem. – 2016. – Vol. 109. – P. 36–44. https://doi.org/10.1016/j.plaphy.2016.09.001

Kuźniak E. and Urbanek H. The involvement of hydrogen peroxide in plant responses to stresses // Acta Physiol. Plant. – 2000. – Vol. 22, No 2. – P. 195-203. doi:10.1007/s11738-000-0076-4

Batyrshina Z., Yergaliyev T. M., Nurbekova Zh., et al. Differential influence of molybdenum and tungsten on the growth of barley seedlings and the activity of aldehyde oxidase under salinity // J. plant phys. – 2018. – Vol. 228. – P. 189-196. https://doi.org/10.1016/j.jplph.2018.06.009

Dildabek A., Ilyasova B., Stamgaliyeva Z., Kassenova S., Zhangazin S., Massalimov Z., & Akbassova A. Crosstolerant Effect of Salt Priming and Viral Infection on Nicotiana benthamiana // Eurasian J. Appl. Biotech. – 2020. – Vol. 1.

Sagi M., Omarov R.T., Lips S.H. The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity // Plant Sci. – 1998. – Vol. 135, No 2. – P. 125–135. https://doi.org/10.1016/S0168-9452(98)00075-2

Arndt C., Koristka S., Bartsch H., Bachmann M. Native Polyacrylamide Gels. Protein Electrophoresis. Methods in Molecular Biology. Totowa, New Jersey: Humana Press, Volume 869. 2012. https://doi.org/10.1007/978-1-61779-821-4_5

Dildabek A. B., Stamgaliyeva Z. B., Ilyasova B. B., et al. Superinoculation of Nicotiana benthamiana Promotes the Development of Immunity to Tomato Bushy Stunt Virus // Russ. J. Pl. Phys. – 2021. – Vol. 68. – P. 883-889.

Zdunek-Zastocka E., Omarov R. T., Koshiba T., & Lips H. S. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions // J. exper. Bot. – 2004. – Vol. 55, No 401. – P. 1361-1369.

Babenko O. N., Brychkova G., Sagi M., and Alikulov Z. A. Molybdenum application enhances adaptation of crested wheatgrass to salinity stress // Acta physiol. Plant. – 2015. – Vol. 37. – P. 1-13. https://doi.org/10.1007/s11738-014-1757-8

Babenko O. and Alikulov Z. Effect of pre-sowing seed priming with molybdate tungstate on the seed germination and growth of crops plant // In Proc. Mod. Sci. Probl. Perspect. Intern. Conf., USA – 2013. – Vol. 4. – P. 48-51.

Aslam M. T., Chattha M. U., Khan I., et al. Scope of Seed Priming in Inducing Biofortification in Plants // In Mineral Biofortification in Crop Plants for Ensuring Food Security. Singapore: Springer Nature Singapore, 2023: pages 233-259. https://doi.org/10.1007/978-981-99-4090-5_11

Yamamura Y. and Scholthof H. B. Tomato bushy stunt virus: a resilient model system to study virus–plant interactions // Mol. plant path. – 2005. – Vol. 6, No 5. – P. 491-502. https://doi.org/10.1111/j.1364-3703.2005.00301.x

Park J. H. and Han H. J. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation in plants // J. hazard. Mat. – 2019. – Vol. 379. – P. 120825.

Consentino B.B., Ciriello M., Sabatino L., et al. Current Acquaintance on Agronomic Biofortification to Modulate the Yield and Functional Value of Vegetable Crops: A Review // Horticulturae – 2023. – Vol. 9, No 2. – P. 219. https://doi.org/10.3390/horticulturae9020219

Zhou J., Sun X., Chen C. and Chen J. The Effect of Molybdenum Fertilizer on the Growth of Grass–Legume Mixtures Related to Symbiotic Rhizobium // Agronomy – 2023. – Vol. 13, No 2. – P. 495. https://doi.org/10.3390/agronomy13020495

Modrow S., Falke D., Truyen U., and Schätzl H. Viruses: definition, structure, classification // Mol. Vir. – 2013. – Vol. 17. https://doi.org/10.1007/978-3-642-20718-1_2

Suleimenova Z. Z., Kutzhanova A. A., Yergaliyev T. M., Batyrshina Z. S., & Omarov, R. T. The development of express method for detection viral diseases in plants // Bull. L.N. Gumilyov Eurasian Nat. Uni. Biosci. Ser. – 2018. – Vol. 3, No 124. – P. 65-69. DOI: 10.32523/2616-7034-2018-124-3-65-69

Kirgizova, I. V., Zhangazin, S. B. and Yergaliyev, T. M. Tomato bushy dwarfism virus // Plant Prot. Quarant. – 2017. – Vol. 9. – P. 46-47.

Moussa M. G., Sun X., Ismael M. A., et al. Molybdenum-induced effects on grain yield, macro–micro-nutrient uptake, and allocation in Mo-inefficient winter wheat // J. Plant Growth Regul. – 2022. – Vol. 41, No 4. – P. 1516-1531. https://doi.org/10.1007/s00344-021-10397-0

Alsherif E. A., Hajjar D. and Abd Elgawad H. Future Climate CO2 Reduces the Tungsten Effect in Rye Plants: A Growth and Biochemical Study // Plants. – 2023. – Vol. 12, No 10. – P. 1924. https://doi.org/10.3390/plants12101924

Adamakis I. D. S. and Eleftheriou E. P. Structural evidence of programmed cell death induction by tungsten in root tip cells of Pisum sativum // Plants. – 2019. – Vol. 8, No 3. – P. 62. https://doi.org/10.3390/plants8030062

Hui W., Hao Z., Hongyan T., et al. Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang, China // Environ. Earth Sci. – 2021. – Vol. 80. – P. 1-12. https://doi.org/10.1007/s12665-021-09539-0

Shevchenko O.V., Kamzel O.A., Budzanivska I.G., et al. Heavy metal soil contamination delays the appearance of virus-induced symptoms on potato but favours virus accumulation // Arch. Phytopath. Plant Prot. – 2007. – Vol. 40, No 6. – P. 406-413. https://doi.org/10.1080/0323540042000203967

Jamal Q., Durani P., Khan K., et al. Heavy metals accumulation and their toxic effects // J. Bio-Mol. Sci. (JBMS) – 2013. – Vol. 1, No 1. – P. 27-36.

Ghoshroy S., Freedman K., Lartey R. and Citovsky, V. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium // The Plant J. – 1998. – Vol. 13, No 5. – P. 591-602. https://doi.org/10.1046/j.1365-313X.1998.00061.x.

Zhou Z., He H., Ma L., et al. Overexpression of a GmCnx1 gene enhanced activity of nitrate reductase and aldehyde oxidase, and boosted mosaic virus resistance in soybean // PLoS One – 2015. – Vol. 10, No 4. – P. e0124273. https://doi.org/10.1371/journal.pone.0124273

Kundu T. K., Velayutham M. and Zweier J. L. Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation // Biochemistry– 2012. – Vol. 51, No 13. – P. 2930-2939. https://doi.org/10.1021/bi3000879

Downloads

Published

2024-03-20