SPECIES DIVERSITY OF WETLAND AND COASTAL AQUATIC FLORA OF THE KETPEN RIDGE
DOI:
https://doi.org/10.26577/eb.2023.v97.i4.04Keywords:
flora, Ketpen ridge, diversity, wetland and coastal-aquatic floristic complexAbstract
This article presents the results of many years of research on the wetland and coastal aquatic flora of the Ketpen Ridge. The paper presents an analysis of the wetland and coastal-aquatic floristic complex of the Ketpen Ridge. The taxonomic diversity of the species composition of the wetland and coastal-aquatic floristic complex, the biomorphological analysis of the life forms of wetland and coastal-aquatic species, as well as the belonging of wetland and coastal-aquatic species to different geographical types of habitats were revealed. A detailed floristic analysis of wetland and coastal aquatic flora made it possible to identify 211 species of vascular plants belonging to 101 genera and 39 families. in its composition 151 species. Analysis of the species richness of the genera of the wetland and coastal aquatic flora of the Ketpen Ridge shows that out of 83 genera, 6 genera are large.
References
Atlas Kazakhskoy SSR. Prirodnyye usloviya i resursy (1982) [Natural conditions and resources]. Almaty, 81 p.
Abdulina S.A. (1998) Sosudistye rastenia Kazakhstana [Vascular plants of Kazakhstan]. Almaty, 188 p.
Botrel M., Maranger R. (2023) Global historical trends and drivers of submerged aquatic vegetation quantities in lakes. Glob. Change Biol., vol. 29 (9), - pp. 2493-2509.
Bansal, S., Post Van Der Burg, M., Fern, R. R., Jones, J. W., Lo, R., McKenna, O. P., et al. (2023) Large increases in methane emissions expected from North America’s largest wetland complex. Science Advances, - vol. 9 (9), - pp. 1112- 1126.
Bartosiewicz, M., Maranger, R., Przytulska, A., & Laurion (2021) Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. Water Research, - vol. 196, - pp. 116985.
Bastviken, D., Treat, C. C., Pangala, S. R., Gauci, V., Enrich-Prast, A., Karlson, M., et al (2023) The importance of plants for methane emission at the ecosystem scale. Aquatic Botany, - vol. 184, - pp. 103596.
Blindow I. (1992) Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology, – vol. 28 (1), - pp.15–27.
Botrel, M., & Maranger, R. (2023) Global historical trends and drivers of submerged aquatic vegetation quantities in lakes. Global Change Biology, - vol. 29 (9), – pp. 2493–2509.
Cael, B. B., Heathcote, A. J., & Seekell, D. A. (2017) The volume and mean depth of Earth’s lakes. Geophysical Research Letters, –vol. 44 (1), – pp. 209–218.
Cronin, G., Lewis, W. M., & Schiehser, M. A. (2006) Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Botany, - vol. 85 (1), – pp. 37–43.
Cherepanov S.K. (1995) Sosudistye rastenia Rossii i sopredelnykh gosudarstv, v predelakh byvshego SSSR [Vascular plants of Russia and neighboring states, within the former USSR]. SPb., 990 p.
Geobotanicheskoye rayonirovaniye SSSR [Geobotanical zoning of the USSR] (1947). M.-L., - pp. 102-130.
Flora SSSR [Flora SSSR] (1934 – 1964). M.: L., vol.1−30.
Flora Kazakhstana [Flora of Kazakhstan] (1956-1966). Alma-Ata, vol.1-9.
Harpenslager, S. F., Thiemer, K., Levertz, C., Misteli, B., Sebola, K. M., Schneider, S. C., et al. (2022). Short-term effects of macrophyte removal on emission of CO2 and CH4 in shallow lakes. Aquatic Botany, vol. 182. – pp. 103555.
Horppila, J., & Nurminen, L. (2005) Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia, - vol. 545 (1). – pp. 167–175.
Illyustrirovannyi opredelitel' rastenii Kazakhstana [Illustrated determinant of plants of Kazakhstan] (1962 – 1975). Alma-Ata, vol. 1-2.
Liu, H., Jin, Q., Luo, J., He, Y., Qian, S., & Li, W. (2021) Synergistic effects of aquatic plants and cyanobacterial blooms on the nitrous oxide emission from wetlands. Bulletin of Environmental Contamination and Toxicology, vol. 108 (3), - pp. 579–584.
Meredith E. Theus, Nicholas E. Ray, Sheel Bansal, Meredith A. (2023) Holgerson. Submersed Macrophyte Density Regulates Aquatic Greenhouse Gas Emissions. JGR: Biogeosciences, - vol.128 (10), - pp. 335-369.
Opredelitel rastenii Srednei Azii [The determinant of plants in Central Asia] (1968 – 1993). Tashkent, vol.1-10.
Skvortsov A.K. (1977) Gerbariy [Herbarium]. Moscow, 199 pp.
Rubtsov N.I. (1965) Luga Severnogo Tyan'-Shanya [Meadows of the Northern Tien Shan]. Proceedings of the Institute of Botany of the Academy of Sciences of the KazSSR. Alma-Ata, vol. 1 pp. 5 - 35.
Rastenia Tsentralnoi Azii [Plants of Central Asia] (1963 -1989). M.: L., vol. 1-9.
Serebryakov I. G. (1962) Ekologicheskaya morfologiya rasteniy [Ecological morphology of plants]. Moscow, 378 p.
Takhtadzhyan A.L. (1987) Sistema magnoliofitov [Magnoliophyte system]. M.: L., 439 p.