STUDY OF THE ROLE OF RNA-INTERFERENCE IN THE REGULATION OF DISCRETE FRAGMENTATION OF 18S RRNA IN PLANTS

Authors

  • A.V. Zhigailov RSE “M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry”, Science committee of the ministry of education and science of the Republic of Kazakhstan, Kazakhstan, Almaty
  • R.Zh. Akbergenov Institute for Medical Microbiology, Switzerland, Zurich
  • N. S. Polimbetova RSE “M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry”, Science committee of the ministry of education and science of the Republic of Kazakhstan, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/eb.2022.v91.i2.011
        92 52

Keywords:

discrete fragmentation of 18S rRNA, heat shock, cytoplasmic RNA, translation of mRNA, 40S ribosomal subunits

Abstract

Under stressful conditions, cells must rapidly reduce the level of total mRNA translation, while maintaining the synthesis of some special proteins that help resist stress. In animals and yeast, the inhibition of protein synthesis is mainly associated with the modification of the translation initiation and elongation factors. In plant cells, many of these regulatory mechanisms are not realized. We hypothesize that plants have an alternative mechanism for suppressing mRNA translation associated with site-specific fragmentation of 18S rRNA molecules within 40S ribosomal subunits. Understanding the molecular mechanisms of plant response to stress is the basis for increasing the efficiency of the breeding process in order to develop stress-resistant varieties of economically important plant species. We found that during a heat shock, discrete RNA molecules accumulate in the cells of various plant species, which are 5'-terminal fragments of 18S rRNA that remain bound in the composition of ribosomal subunits. In this work, the method of nucleic acid hybridization was used to study RNA-interference as a possible mechanism mediating the phenomenon of discrete fragmentation of 18S rRNA in plants in response to heat shock. MicroRNA molecules complementary to the target regions of 18S rRNA, through which its rupture was carried out with the formation of stress-induced 5'-terminal RNA fragments, were not found. The small 5'-terminal fragments of 18S rRNA revealed during the work are proposed to be used as a new type of stress biomarkers in plant cells. The optimized nucleic acid hybridization technique using a DIG-labeled probe complementary to the highly conserved 1-35 5'-end region of plant 18S rRNA can be used to efficiently detect these stress RNA markers.

References

Ballard D.J., Peng H.-Y., Das J.K., Kumar A., Wang L., Ren Y., Xiong X., Ren X., Yang J.-M., Song J. Insights into the pathologic roles and regulation of eukaryotic elongation factor-2 kinase // Front. Mol. Biosci. - 2021. – Vol.8. – P. 839.

Smailov S.K., Lee A.V., Iskakov B.K. Study of phosphorylation of translation elongation factor 2 (EF-2) from wheat germ // FEBS Lett. – 1993. – Vol. 321. – P. 219–223.

Gallie D.R., Le H., Caldwell C., Browning K.S. Analysis of translation elongation factors from wheat during development and following heat shock // Biochem. Biophys. Res. Comm. – 1998. – Vol.245. – P. 295-300.

Hernandez G., Altmann M., Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes // Trends Biochem. Sci. -2010. – Vol.35. – P. 63-73.

Echevarria-Zomeno S., Yanguez E., Fernandez-Bautista N., Castro-Sanz A.B., Ferrando A., Castellano M.M. Regulation of translation initiation under biotic and abiotic stresses // Int. J. Molec. Sci. - 2013. – Vol.14. – P. 4670-4683.

Browning K.S., Bailey-Serres J. Mechanism of cytoplasmic mRNA translation // Arabidopsis Book. - 2015. – Vol.13. – P. e0176.

Baird Th.D., Wek R.C. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism // Adv. Nutr. - 2012. - Vol. 3. – P. 307-321.

Shaikhin S.M., Smailov S.K., Lee A.V., Kozhanov E.V., Iskakov B.K. Interaction of wheat germ translation initiation factor 2 with GDP and GTP // Biochimie. – 1992. - Vol. 74. - P. 447–454.

Zhigailov A.V., Alexandrova A.M., Nizkorodova A.S., Stanbekova G.E., Kryldakov R.V., Karpova O.V., Polimbetova N.S., Halford N.G., Iskakov B.K. Evidence That Phosphorylation of the α-subunit of eIF2 does not essentially inhibit mRNA translation in wheat germ cell-free system // Front. Plant Sci. – 2020. – Vol. 11. – P. 936.

Immanuel T.M., Greenwood D.R., MacDiarmid R.M. A critical review of translation initiation factor eIF2α kinases in plants – regulating protein synthesis during stress // Funct. Plant Biol. – 2012. – Vol. 39. – P. 717–735.

Zhanybekova S.S., Polimbetova N.S., Nakisbekov N.O., Iskakov B.K. Detection of a new small RNA, induced by heat shock, in wheat seed ribosomes // Biochemistry (Moscow). – 1996. - Vol. 61. - P. 862-870.

Жигайлов А.В., Полимбетова Н.С., Дощанов Х.И., Искаков Б.К. Обнаружение в клетках растений новой 55-нуклеотидной цитоплазматической РНК, соответствующей 5’-концевому фрагменту 18S РНК // Вестник КазНУ, Серия биологическая и медицинская. – 2014. –№1. – С. 191-194.

Жигайлов А.В., Полимбетова Н.С., Боранқұл Р.И., Искаков Б.К. Исследование дискретной фрагментации 18S рРНК в составе 40S рибосомных субчастиц клеток растений // Вестник Казну. Серия биологическая. – 2013. - №2. – С. 81-87.

Chen Z., Sun Y., Yang X., Wu Z., Guo K., Niu X., Wang Q., Ruan J., Bu W., Gao S. Two featured series of rRNA-derived RNA fragments (rRFs) constitute a novel class of small RNAs // PLoS ONE. – 2017. – Vol. 12. – P. e0176458.

Henras A.K., Plisson-Chastang C., O’Donohue M.F., Chakraborty A., Gleizes P.E. An overview of pre-ribosomal RNA processing in eukaryotes // Wiley Interdiscip Rev. RNA. – 2015. – Vol. 6. – P. 225–242.

Endo Y. Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes // Cancer Res. Treat. - 1988. – Vol.37. – P. 75–89.

Kast A., Klassen R., Meinhardt F. rRNA fragmentation induced by a yeast killer toxin // Mol. Microbiol. - 2014. - Vol. 91, No.3. – P. 606-617.

Castellano L., Stebbing J. Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues // Nucleic Acids Res. – 2013. – Vol. 41. – P. 3339–3351.

Locati M.D., Pagano J.F.B., Abdullah F., Ensink W.A., van Olst M., van Leeuwen S., Nehrdich U., Spaink H.P., Rauwerda H., Jonker M.J., Dekker R.J., Breit T.M. Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development // Genome. – 2018. – Vol.61. – P. 371-378.

Gallie D.R., Caldwell C., Pitto L. Heat shock disrupts cap and poly(A) tail function during translation and Increases mRNA stability of introduced reporter mRNA // Plant physiol. – 1995. – Vol.108. – P. 1703–1713.

Zheng Y., Wang S., Sunkar R. Genome-wide discovery and analysis of phased small interfering RNAs in Chinese sacred lotus // PLoS ONE. – 2014. – Vol. 9. – P. e113790.

Heuer A., Thomson E., Schmidt C., Berninghausen O., Becker T., Hurt E., Beckmann R. Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae // Elife. – 2017. – Vol. 6. – P. e30189.

Williams A.J., Werner-Fraczek J., Chang I.-F., Bailey-Serres J. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize // Plant Physiol. – 2003. – Vol.132. – P. 2086-2097.

Sergiev P.V., Lavrik I.N., Dokudovskaya S.S., Dontsova O.A., Bogdanov A.A. Structure of the decoding center of the ribosome // Biochemistry (Moscow). - 1998. – Vol.63. – P. 963–976.

Obomighie I., Lapenas K., Murphy B.E., Bowles A., Bechtold U., Prischi F. The Role of Ribosomal Protein S6 Kinases in Plant Homeostasis // Frontiers in molecular biosciences. –2021. – Vol.8. – P. 636560.

Downloads

How to Cite

Zhigailov А. ., Akbergenov Р. ., & Polimbetova Н. . (2022). STUDY OF THE ROLE OF RNA-INTERFERENCE IN THE REGULATION OF DISCRETE FRAGMENTATION OF 18S RRNA IN PLANTS. Experimental Biology, 91(2), 128–137. https://doi.org/10.26577/eb.2022.v91.i2.011

Issue

Section

МOLECULAR BIOLOGY AND GENETICS

Most read articles by the same author(s)