Comparative study of Brachypodium distachyon and kazakhstan soft wheat varieties resistance to Puccinia recondita
DOI:
https://doi.org/10.26577/eb-2018-4-1362Abstract
One of the important issues of the modern world economics is ensuring the quality of food, relevant for Kazakhstan, where the possibility of cultivating soft and hard wheat varieties and high technological quality grain production are among the strategically important tasks of its national security. Biotic and abiotic environmental stress factors may lead to decrease in cereals productivity, and annual loss in the global yield of crops from diseases, according to FAO, is estimated at more than $25 billion, equivalent to 35% of the potential harvest. At the same time, creation of pathogen-resistant varieties of cultivated plants by means of traditional breeding is long-term, and the evolution of pathogens is ahead of the possibilities of practical breeding, resulting in creation of pathogen resistant varieties being late with their introduction into production; for a deeper understanding of the basics and in terms of accelerating processes in the leading countries of the world, model organisms are involved into the process. The aim of this work is to estimate the influence of brown leaf rust on the elements of productivity and protein content in grain of local varieties of soft wheat Kazakhstanskaya 19, Kazakhstanskaya early and new model object Brachypodium distachyon along with their correlation. The results of the comparative study of the impact of biotic stress on the elements of productivity have shown that Puccinia recondita statistically significantly reduces the productivity of all parameters in wheat varieties Kazakhstanskaya 19, Kazakhstanskaya early and model object Brachypodium distachyon. The protein content in the grain of wheat of local breeding varieties Kazakhstanskaya 19, Kazakhstanskaya early and wild cereal Brachypodium distachyon is not changed when infected with brown leaf rust.
Key words: Brachypodium distachyon, Kazakhstani soft wheat varieties, brown leaf rust, resistance, study.
References
2 Food and Agriculture Organization of the United Nations. Country fact sheet on food and agriculture policy trends: Kazakhstan. – 2017. – P. 1-6.
3 Figueroa M., Castell-Miller C., Li F., Hulbert S., Bradeen J. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions // Front Plant Sci.. – 2015. – Vol. 6. – P. 1-11.
4 Müller B., Grossniklaus U. Model organisms – a historical perspective // J Proteomics. – 2010. – Vol. 73. – P. 2054–2063.
5 Ayliffe M., Singh D., Park R., Moscou M., Pryor T. Infection of Brachypodium distachyon with selected grass rust pathogens // MPMI. – 2013. – Vol. 26. – P. 946–957.
6 Койшибаев М. Болезни зерновых культур. – А.: Бастау. – 2002. – С. 367.
7 Кочоров А., Сагитов А., Аубакирова А., Алишеров Ж. Распространение ржавчинных болезней пшеницы в Казахстане // Национальная академия микологии. – 2013. – С. 163-165.
8 Неттевич Э. Рождение и жизнь сорта. – М.: Московский рабочий. – 1978. – C. 175.
9 Bushnell W., Roelfs A. The Cereal Rusts: origins, specificity, structure, and physiology. – Academic Press, Inc. – 1984. – P. 546.
10 Mullins E. Engineering for disease resistance: persistent obstacles clouding tangible opportunities // Pest Manag Sci. – 2015. – Vol. 71. – P. 645-651.
11 Shulembayeva K., Chunetova Zh., Dauletbayeva S., Tokubayeva A., Omirbekova N., Zhunusbayeva Zh., Zhussupova A. Some results of the breeding and genetic studies of common wheat in the south-east of Kazakhstan // Int J Biol Chem. – 2014. – Vol. 8. – P. 6-10.
12 Draper J., Mur L., Jenkins G., Ghosh-Biswas G., Bablak P., Hasterok R., Routledge A. Brachypodium distachyon: a new model system for functional genomics in grasses // Plant Physiol. – 2001. – Vol. 127. – P. 1539-1555.
13 Peraldi A., Beccari G., Steed A., Nicholson P. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat // BMC Plant Biol. – 2011. – Vol. 11. – P. 1-14.
14 McIntosh R., Wellings C., Park R. Wheat Rusts: An atlas of Resistance Genes. – Australia: CSIRO. – 1995. – P. 200.
15 Бейли Д. Методы химии белка. – М.: Иностр. лит. – 1965.– 284 с.
16 Srivastava G.C. Modern Methods in Plant Physiology. – India: New India Publishing. – 2015. – Р. 149.
17 Rothe G.M. Electrophoresis of Enzymes: Laboratory Methods. – Germany: Springer. – 2011. –328 р.
18 Mathur M., Singh V.K., Mukerji D., Mathur S.N. Colorimetric estimation of glutamate dehydrogenase in leaf tissue of Vigna mungo (L.) Hepper // Ann. Bot. – 1983. – P. 105-110.
19 McKenzie E., Lees E. Glutamate dehydrogenase activity in developing soybean seed: isolation and characterization of three forms of the enzyme // Arch Biochem Biophys. – 1981. – Vol. 212. – P. 290-297.
20 Calderini D., Dreccer M., Slafer G. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends // Plant Breed. – 1995. – Vol. 114. – P. 108-112.
21 Морозова З. Методология использования закономерностей морфогенеза колосовых злаков в селекции: научно-методическое пособие. – М.: МАКС Пресс. – 2013. – С. 365.
22 Натрова З., Смочек Я. Продуктивность колоса зерновых культур. – М.: Колос. – 1983. – С. 45.
23 Шакирова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция. – Уфа: Гилем. – 2001. – 159 с.
24 Молодченкова О., Адамовская В., Цисельская Л., Сагайдак Т. Выделение и свойства лектинов клеточных стенок из проростков пшеницы при инфицировании грибными патогенами и действии салициловой кислоты // Вестник Харьковского национального аграрного университета серия биология. – 2012. – Т. 26. – С. 54-60.
25 Белава В., Зеленый С., Панюта О. Экспрессия генов лектина и дефенсина у сортов пшеницы Мироновская 808 и Roazon при инфицировании Pseudocercosporella herpotrechoides // Biopolimers and Cell. – 2010. – Т. 26. – С. 45-50.
26 Hare P., Cress W., Staden J. Prolin synthesis and degradation: a model for elucidating stress related signal transduction // J Exp Bot. – 1999. – Vol. 50. – P. 413-434.
27 Кузнецов В., Шевякова Н. Пролин при стрессе: биологическая роль, метаболизм, регуляция // Физиол. раст. – 1999. – Т. 46. – С. 321–336.
28 Ozgur R., Uzilday B., Sekmen A., Turkan I. Reactive oxygen species regulation and antioxidant defence in halophytes // Funct. Plant Biol. – 2013. – Vol. 40. – P. 832–847.
29 Qamar A., Mysore K., Senthil-Kumar M. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens // Front Plant Sci. – 2015. – Vol.6. – P. 1-9.
30 Cecchini N., Monteoliva M., Alvarez M. Proline dehydrogenase contributes to pathogen defense in Arabidopsis // Plant Physiol. – 2011. – Vol. 155. – P. 1947-1959.
31 Barker A., Pilbeam D. Handbook of Plant Nutrition. – CRC Press. – 2015. – P. 773.
32 Kodde J., Buckley W., de Groot C., Retiere M., Zamora A., Groot S. A fast ethanol assay to detect seed deterioration // Seed Sci Res. – 2011. – P. 1-8.
References
Ayliffe M., Singh D., Park R., Moscou M., Pryor T. (2013) Infection of Brachypodium distachyon with selected grass rust pathogens. MPMI, vol. 26, pp. 946–957.
Barker A., Pilbeam D. (2015) Handbook of Plant Nutrition. CRC Press, p. 773.
Bailey D. (1965) Metody himii belka [Techniques in protein chemistry]. M.: Inostr. Lit, p. 284.
Belava V., Zelenyj S., Panjuta O. (2010) Jekspressija genov lektina i defensina u sortov pshenicy Mironovskaja 808 i Roazon pri inficirovanii seudocercosporella herpotrechoides [Expression of lectin and defensin genes in wheat varieties Mironovskaya 808 and Roazon with infection of Pseudocercosporella herpotrechoides]. Biopolimers and Cell, vol. 26, pp. 45-50.
Bushnell W., Roelfs A. (1984) The Cereal Rusts: origins, specificity, structure, and physiology. Academic Press, Inc., p. 546.
Calderini D., Dreccer M., Slafer G. (1995) Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. Plant Breed., vol. 114, pp. 108-112.
Cecchini N., Monteoliva M., Alvarez M. (2011) Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol., vol. 155, pp. 1947-1959.
Draper J., Mur L., Jenkins G., Ghosh-Biswas G., Bablak P., Hasterok R., Routledge A. (2011) Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiol., vol. 127, pp. 1539-1555.
Figueroa M., Castell-Miller C., Li F., Hulbert S., Bradeen J. (2015) Pushing the boundaries of resistance: insights from Brachypodium-rust interactions. Front Plant Sci., vol. 6, pp. 1-11.
Food and Agriculture Organization of the United Nations (2017) Country fact sheet on food and agriculture policy trends: Kazakhstan, pp. 1-6.
Hare P., Cress W., Staden J. (1999) Prolin synthesis and degradation: a model for elucidating stress related signal transduction. J Exp Bot, vol. 50, pp. 413-434.
Kojshibaev М. (2002) Bolezni zernovyh kul'tur [Diseases of grain crops]. A.: Bastau, p. 367.
Kochorov А., Sagitov А., Aubakirova А., Alisherov Zh. (2013) Rasprostranenie rzhavchinnyh boleznej pshenicy v Kazahstane [Distribution of wheat rusts in Kazakhstan]. Nacional'naja akademija mikologii, pp. 163-165.
Kodde J., Buckley W., de Groot C., Retiere M., Zamora A., Groot S. (2011) A fast ethanol assay to detect seed deterioration. Seed Sci Res, pp. 1-8.
Kuznecov V., Shevjakova N. (1999) Prolin pri stresse: biologicheskaja rol', metabolizm, reguljacija [Proline under stress: biological role, metabolism, regulation]. Fiziol rast, vol. 46, pp. 321-336.
Mathur M., Singh V.K., Mukerji D., Mathur S.N. (1983) Colorimetric estimation of glutamate dehydrogenase in leaf tissue of Vigna mungo (L.) Hepper. Ann. Bot., pp. 105-110.
McIntosh R., Wellings C., Park R. (1995) Wheat Rusts: An atlas of Resistance Genes. Australia: CSIRO, p. 200.
McKenzie E., Lees E. Glutamate dehydrogenase activity in developing soybean seed: isolation and characterization of three forms of the enzyme. Arch Biochem Biophys, vol. 212, pp. 290-297.
Molodchenkova O., Adamovskaja V., Cisel'skaja L., Sagajdak T. (2012) Vydelenie i svojstva lektinov kletochnyh stenok iz prorostkov pshenicy priinficirovanii gribnymi patogenami i dejstvii salicilovoj kisloty [Extraction and properties of cell wall lectins from infected with fungal pathogens and affected by salicylic acid wheat germs]. Vestnik Har'kovskogo nacional'nogo agrarnogo universiteta serija biologija, vol. 26, pp. 54-60.
Morozova Z. (2013) Metodologija ispol'zovanija zakonomernostej morfogeneza kolosovyh zlakov v selekcii: nauchno-metodicheskoe posobie [Methodology of using the morphogenesis of spiked cereals patterns in breeding: scientific-methodological manual]. M.: MAKS Press, p. 365.
Mullins E. (2015). Engineering for disease resistance: persistent obstacles clouding tangible opportunities. Pest Manag Sci, vol. 71, pp. 645-651.
Müller B., Grossniklaus U. (2010) Model organisms – a historical perspective. J Proteomics, vol.
Natrova Z., Smochek Ja. (1983) Produktivnost' kolosa zernovyh kul'tur [Productivity of the ear of cereals]. M.: Kolos, p. 45.
Nettevich Je. (1978) Rozhdenie i zhizn' sorta [Birth and life of a variety]. M.: Moskovskij rabochij, p. 175.
Ozgur R., Uzilday B., Sekmen A., Turkan I. (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol, vol. 40, pp. 832–847.
Peraldi A., Beccari G., Steed A., Nicholson P. (2011) Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol., vol. 11, pp. 1-14.
Qamar A., Mysore K., Senthil-Kumar M. (2015) Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Front Plant Sci, vol. 6, pp. 1-9.
Rothe G.M. (2011) Electrophoresis of Enzymes: Laboratory Methods. Berlin: Springer, p.328.
Shakirova F. (2001) Nespecificheskaja ustojchivost' rastenij k stressovym faktoram i ee reguljacija [Plants nonspecific resistance to stress factors and its regulation]. Ufa: Gilem, p. 159.
Shulembayeva K., Chunetova Zh., Dauletbayeva S., Tokubayeva A., Omirbekova N., Zhunusbayeva Zh., Zhussupova A. (2014) Some results of the breeding and genetic studies of common wheat in the south-east of Kazakhstan. Int J Biol Chem, vol. 8, pp. 6-10.
Srivastava G.C. Modern Methods in Plant Physiology. – India: New India Publishing. – 2015. – Р. 149.
Tilman D., Balzer C., Hill J., Befort B. (2011) Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA, vol. 108, pp. 20260–20264.