Comparative analysis of lipid extraction methods for biomass of the Cyanobacterium sp. IPPAS B-1200 strain - potential producer of biodiesel

Authors

  • A. Usserbayeva Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • B. Zayadan Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Sadvakassova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • F. Sarsekeyeva Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Talpakova Al-Farabi Kazakh National University, Kazakhstan, Almaty
        55 52

Keywords:

lipid, extraction, Cyanobacterium sp., biodiesel

Abstract

Cyanobacteria are modern and promising producers of biodiesel. Despite the fact that there is a large amount of knowledge about the high accumulation of lipids by individual strains of cyanobacteria at the laboratory level, the issue of lipid extraction, allowing to extract the maximum amount of intracellular lipids from biomass, remains open. Cyanobacterium sp. IPPAS B-1200 is a strain of cyanobacteria isolated from Balkhash lake. According to previous studies, the analysis of the fatty acid composition of total cellular lipids showed that the strain Cyanobacterium sp. has a high content of myristic (14: 0) and myristoleoleic acids (Δ9-14: 1) (30% and 10% of the sum of fatty acids, respectively). Such an FA composition is a rarity for cyanobacteria, and at the same time, it is 14: 0 and Δ 9-14: 1 that FA s are potential target products for biofuel production. The article considers the process of lipid extraction from cyanobacteria using various organic solvents. A comparative analysis of the methods of lipid extraction from the biomass of the cyanobacterium strain Cyanobacterium sp. IPPAS B-1200. Experimental data on the yield of the lipid fraction during extraction using various organic solvents are indicated. The following compositions were used as extractants: Chloroform-methanol 2/1; Chloroform-methanol 1/2; Hexane-isopropanol 3/2. It was found that lipid extraction with methanol/chloroform 2/1 (Bligh and Dyer method) gives the highest lipid yield and is 9% of the dry matter of the biomass of the strain under investigation. The obtained data make it possible to consider the Bligh and Dyer method to be optimal. Thus, research directed on study of possibilities of increasing lipid production and providing the good quality raw material will allow to find ways for solution of problem of obtaining the third generation alternative biofuel.

References

Al-Thani R.F, Potts M., Cyanobacteria, oil and cyanofuel? // Ecology of cyanobacteria II: their diversity in space and time, ed. Brian A. Whitton. – 2012.- P. 427–440.
Antoni D., Zverlov V.V., Schwarz W.H., Biofuels from microbes, // Appl Microbiol Biotechnol. – 2007. - V.77. - P. 23-35.
Bligh.E.G., Dyer.W.J., A rapid method for total lipid extraction and purification // Can.J.Biochem.Physiol.,- 1959.-V. 37. - P.911- 917.
Chen S. etc. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry // J Chromatogr A. - 2013.-V.1298. - P.9-16.
Chisti Y. Biodiesel from microalgae // Biotechnol Adv.- 2007– V. 25. – P. 94–306.
Da Rós P.C., Silva C.S., Silva-Stenico M.E., Fiore M.F. and De Castro H.F. Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production // Mar. Drugs. – 2013. - V.11.-P. 2365-2381
Folch et al., A simple method for the isolation and purification of total lipids from animal tissues // J BiolChem.- 1957.-V. 226.-P. 497.
Gopinath. S. M, Ashalatha, Niruba J., Meghana .R . Isolation, Molecular Identification and Comparative Lipid Profiling of Microalgae and Cyanobacteria // IJSR.- 2014.- V. 3, №7. – Р.: 2319-7064.
Griffiths M.; Harrison S. Lipid productivity as a key characteristic for choosing algal species for biodiesel production // J. Appl. Phycol. – 2009. – V. 21 - Р. 493–507.
Hara A., Radin N.S. Lipid extraction of tissues with a low-toxicity solvent // Analytical biochemistry.- 1978.-V.90.-P. 420-426.
Kiaei, E. etc. Screening of Cyanobacterial Strains as a Smart Choice for Biodiesel // J. Appl. Environ. Biol. Sci.- 2015.-V. 5, №8. - P.236-245.
Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition // Energy Environ. Sci. - 2009.-V.2. - P.759-766.
Krawczyk T., Biodiesel – alternative fuel makes inroads but hurdles remain, // Inform., - 1996. - V.7. - P.801-829.
Lang X., Dalai A.K., Bakhshi N.N., Reaney M.J., Hertz P.B. Preparation and characterization of bio-diesels from various bio-oils // Bioresour. Technol. – 2001. – V.80б № 1. – P.53-62.
Lee J.-Y., Yoo C., Jun S.-Y., Ahn C.-Y., Oh H.-M. Comparison of several methods for effective lipid extraction from microalgae // Bioresource Technology. -2010.- V. 101. № 1.-P. 75—77.
Li Q., Du W., Liu D., Perspectives of microbial oils for biodiesel production, // Appl. Microbiol. Biotechnol. – 2008. - V.80. - P. 749-756.
Liu X., Fallon S., Sheng J., Curtiss R. CO2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass // Proc. Natl. Acad. Sci. USA, – 2011. – V.108, № III. - P. 6905-6908.
Margulis L. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof // Symp. Soc. Exp. Biol. – 1975.-P. 21-38.
Naik S.N., Goud V.V., Rout P.K., Dalai A.K. Production of first and second-generation biofuels: a comprehensive review // Renew Sustain Energ Rev. – 2010. -V.14. – P. 578–597.
Pahl G. Biodiesel. Growing a New Energy Economy // Chelsea Green Publishing. – 2010. – P. 298.
Prˇibyl P., Cepa´k V., Zachleder V. Oil overproduction by means of microalgae // Cultivation of cells and products. – 2014. – V.1. – P. 241–273.
Sarsekeyeva F., Usserbaeva A., Zayadan B.K., Mironov K., Sidorov R., Kozlova A., Kupriyanova E., Sinetova M., Los D.A. Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition // Advances In Microbiology. – 2014.- V.4, №15.-P. 1033-1043.
Sarsekeyeva F., Zayadan B.K., Usserbaeva A., Bedbenov V.S., Sinetova M.A., Los D.A., Cyanofuels: biofuels from cyanobacteria: Reality and perspectives // Photosynth. Res. – 2015.-V. 125, №1-2.-P. 329-340.
Schenk P., Thomas-Hall S., Stephens E., Marx U., Mussgnug J., Posten C. et al. Second generation biofuels: high-efficiency microalgae for biodiesel production // BioEnergy Res. – 2008. – V.1. – P.20–43.
Selvan B.K., Revathi M., Piriya P.S., Vasan P.T. Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors // Indian journal of experimental biology.- 2013.-V. 51. - P. 262 – 268.
Steen E.J., et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass // Nature. – 2010. – V.463.- Р. 559–562.
Usui N., Ikenouchi M. The biological CO2 fixation and utilization project by RITE(1) Highly-effective photobioreactor system // Energy Convers Manage – 1997.- V.38.-P. 487-492.
Лось Д.A. Десaтурaзы жирных кислот. - Москва: Нaучный мир.- 2014.- 370 с. ISBN:978-5-91522-391-1
Сиренко Л.А., Сакевич А.И. и др. Методы физиолого-биохимического исследования водорослей в гидробиологической практике. - Киев: Наукова думка. - 1975. - 248 с.
Талпақова А.Е., Усербаева А.А. Cyanobacterium sp. IPPAS B-1200 штамм клеткасынан липидтер экстракциялау алу // Материалы междунородной конференции студентов и молодых ученых «Фарабі әлемі» 10-11 апреля, Алматы. – 2017. - С. 112.

References
Al-Thani R.F, Potts M., (2012) Cyanobacteria, oil—and cyanofuel? Ecology of cyanobacteria II: their diversity in space and time, ed. Brian A. Whitton, pp. 427–440.
Antoni D., Zverlov V.V., Schwarz W.H. (2007) Biofuels from microbes, Appl Microbiol Biotechnol., vol.77, pp. 23-35.
Bligh.E.G., Dyer.W.J., (1959) A rapid method for total lipid extraction and purification, Can.J.Biochem.Physiol., vol.37, pp. 911- 917.
Chen S and etc. (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry, J Chromatogr A., vol.1298: pp. 9-16.
Chisti Y. (2007) Biodiesel from microalgae, Biotechnol Adv., vol. 25, pp. 94–306.
Da Rós P.C., Silva C.S., Silva-Stenico M.E., Fiore M.F. and De Castro H.F (2013) Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production, Mar. Drugs, vol.11, pp. 2365-2381.
Folch et al. (1957) A simple method for the isolation and purification of total lipids from animal tissues, J. BiolChem., vol.226, pp. 497.
Gopinath. S.M, Ashalatha, Niruba J., Meghana .R. (2014) Isolation, Molecular Identification and Comparative Lipid Profiling of Microalgae and Cyanobacteria, IJSR, vol.3, no 7, pp. 2319-7064.
Griffiths M.; Harrison S. (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., vol.21, pp.493–507.
Hara A., Radin N.S. (1978) Lipid extraction of tissues with a low-toxicity solvent, Analytical biochemistry, vol.90, pp. 420-426.
Kiaei, E, etc. (2015) Screening of Cyanobacterial Strains as a Smart Choice for Biodiesel, J. Appl. Environ. Biol. Sci., vol.5, no 8, pp.236-245.
Knothe G. (2009) Improving biodiesel fuel properties by modifying fatty ester composition, Energy Environ. Sci., vol.2, pp.759-766.
Krawczyk T. (1996) Biodiesel – alternative fuel makes inroads but hurdles remain, Inform., vol.7, pp.801-829.
Lang X., Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. (2001) Preparation and characterization of bio-diesels from various bio-oils, Bioresour Technol., vol.80, no 1, pp.53-62.
Lee J.-Y., Yoo C., Jun S.-Y., Ahn C.-Y., Oh H.-M. (2010) Comparison of several methods for effective lipid extraction from microalgae, Bioresource Technology, vol.101, no 1, pp. 75—77.
Li Q., Du W., Liu D. (2008) Perspectives of microbial oils for biodiesel production, Appl Microbiol Biotechnol., vol.80, pp. 749-756.
Liu X., Fallon S., Sheng J., Curtiss R. (2011) CO2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass, Proc. Natl. Acad. Sci. USA, vol.108, no III, pp. 6905-6908.
Los D.A. (2014) Desaturazy zhirnyh kislot [Desaturases of fatty acids], Moskva:Nauchniy mir [Moscow: Scientific world], pp.370. ISBN: 978-5-91522-391-1.
Margulis L. (1975) Symbiotic theory of the origin of eukaryotic organelles; criteria for proof, Symp. Soc. Exp. Biol., pp. 21-38.
Naik S.N., Goud V.V., Rout P.K., Dalai A.K. (2010) Production of first and second-generation biofuels: a comprehensive review, Renew Sustain Energ Rev.,vol.14, pp. 578–597.
Pahl G. (2010) Biodiesel. Growing a New Energy Economy, Chelsea Green Publishing, pp. 298.
Prˇibyl P., Cepa´k V., Zachleder V. (2014) Oil overproduction by means of microalgae, Cultivation of cells and products, vol.1, pp. 241–273.
Sarsekeyeva F., Usserbaeva A., Zayadan B.K., Mironov K., Sidorov R., Kozlova A., Kupriyanova E., Sinetova M., Los D.A. (2014) Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition, Advances In Microbiology, vol.4, no 15, pp. 1033-1043.
Sarsekeyeva F., Zayadan B.K., Usserbaeva A., Bedbenov V.S., Sinetova M.A., Los D.A., (2015) Cyanofuels: biofuels from cyanobacteria: Reality and perspectives, Photosynth. Res. vol.125, no 1-2, pp. 329-340.
Schenk P., Thomas-Hall S., Stephens E., Marx U., Mussgnug J., Posten C. et al. (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Res., vol.1, pp. 20–43.
Selvan B.K., Revathi M., Piriya P.S., Vasan P.T. (2013) Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors, Indian journal of experimental biology, vol.51, pp. 262 – 268.
Sirenko L.A., Sakevich A.I., etc. (1975) Metody fiziologo-biohimicheskogo issledovaniya vodorosley v gidrobiologicheskoy praktike [Methods of physiological and biochemical study of algae in hydrobiological practice], Kiev:Naukova dumka [Kiev: Scientific thought], pp. 248.
Steen E.J., et al. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass, Nature, vol.463, pp. 559–562.
Usui N, Ikenouchi M. (1997) The biological CO2 fixation and utilization project by RITE(1) Highly-effective photobioreactor system. Energy Convers Manage, vol.38, pp. 487-492.
Талпақова А.Е., Усербаева А.А. (2017) Cyanobacterium sp. IPPAS B-1200 штамм клеткасынан липидтер экстракциялау алу, Материалы междунородной конференции студентов и молодых ученых «Фарабі әлемі» 10-11 апреля, Алматы, С. 112.

Downloads

Published

2017-11-15

How to Cite

Usserbayeva, A., Zayadan, B., Sadvakassova, A., Sarsekeyeva, F., & Talpakova, A. (2017). Comparative analysis of lipid extraction methods for biomass of the Cyanobacterium sp. IPPAS B-1200 strain - potential producer of biodiesel. Experimental Biology, 72(3), 129–137. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1286