Effect of bioactive substances from Limonium gmelinii (Plumbaginaceae) and Inula britannica L. (Compositae) on anti-oxidative status of barley seedlings at asymmetric dymethylhydrazine effects

Authors

  • S. Zh. Kolumbayeva Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty
  • B. K. Kairat al-Farabi Kazakh National University
  • S. B. Orazova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. V. Lovinskaya Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • T. M. Shalakhmetova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Z. М. Biyasheva Al-Farabi Kazakh National University, Kazakhstan, Almaty

Keywords:

unsymmetrical dimethylhydrazine, sprouts of barley, Limonium gmelinii, Inula britannica l., malondialdehyde, superoxide dismutase, catalase.

Abstract

Plant resistance to environmental stress factors largely depends on the state of the antioxidant system (AOS). Essential antioxidants of plants as a specialized enzyme systems (superoxide dismutase, catalase, etc.) directly effect on reactive oxygen species are liable to hinder or eliminate free radical oxidation of organic substances. AOS enzymes are involved in the regulation of metabolism and are of particular importance in enabling rapid adaptation to constantly changing external conditions of environment. The aim of our research was to study the influence of different concentrations of bioactive substances extracted from aboveground and underground parts of Limonium gmelinii and Inula britannica on the functioning of antioxidative enzymes of barley seedlings under the unsymmetrical dymethylhydrazine (UDMH). It is found that UDMH activated protective antioxidant system in 2-day barley sprouts. Revealed a high content of malondialdehyde and increasing catalase activity compared with control. The combined impact of UDMH and bioactive substances of plants reduce the intensity of lipid peroxidation and catalase activity in barley sprouts. This directly indicates that bioactive substances of Limonium gmelinii and Inula britannica have adaptogenic properties.

Author Biographies

S. Zh. Kolumbayeva, Al-Farabi Kazakh National University, Republic of Kazakhstan, Almaty

Колумбаева Сауле Жанабаевна - доктор биологических наук, профессор кафедры молекулярной биологии и генетики Казахского национального университета имени аль-Фараби

B. K. Kairat, al-Farabi Kazakh National University

lecturer of the Department of Biophysics and Biomedicine, al-Farabi Kazakh national University

S. B. Orazova, Al-Farabi Kazakh National University, Kazakhstan, Almaty

Оразова Салтанат Болатовна - кандидат биологических наук, ст. преподаватель кафедры биотехнологии Казахского национального университета имени аль-Фараби

A. V. Lovinskaya, Al-Farabi Kazakh National University, Kazakhstan, Almaty

Ловинская Анна  Владмимровна  - PhD, преподаватель кафедры молекулярной биологии и генетики Казахского национального университета имени аль-Фараби

T. M. Shalakhmetova, Al-Farabi Kazakh National University, Kazakhstan, Almaty

Шалахметова Тамара  Минажевна  доктор биологических наук, профессор кафедры биоразнообразия и биоресурсов Казахского национального университета имени аль-Фараби

Z. М. Biyasheva, Al-Farabi Kazakh National University, Kazakhstan, Almaty

References

1 Seca A.M.L., Grigore A., Pinto D.C.G.A., Silva A.M.S. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses // Journal of Ethnopharmacology. – 2014. – Vol. 154, № 2. – P. 286-310. DOI: 10.1016/j.jep.2014.04.010
2 Hong T., Zhao J., Dong M., Meng Y., Mu J., Yang Z. Composition and bioactivity of polysaccharides from Inula britannica flower // International Journal of Biological Macromolecules. – 2012. – Vol. 51, № 4. - P. 550–554.
3 Medini F., Bourgou S., Lalancette K.G., Snoussi M., Mkadmini K., Coté I., Abdelly C., Legault J., Riadh K. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages // South African Journal of Botany . – 2015. – Vol. 99. - P. 158–164
4 Antonelli-Ushirobira T.M., Blainski A., Fernandes H.G., Moura-Costa G.F., Costa M.A., Campos L.B., Salgueiro-Pagadigorria C.L., Kaneshima E.N., Becker T.C.A., Leite-Mello E.V.S., de Mello J.C.P. Acute toxicity and long-term safety evaluation of the crude extract from rhizomes of Limonium brasiliense in mice and rats // Journal of Ethnopharmacology - 2015. – Vol.174. – P. 293-298. doi:10.1016/j.jep.2015.08.022.
5 Колумбаева С.Ж., Бегимбетова Д.А. Мутагенные эффекты химических загрязнителей окружающей среды. – Алматы: Қазақ университетi, 2013. – 196 с.
6 Панин Л.Е., Перова А.Ю. Медико-социальные и экологические проблемы использования ракет на жидком топливе (гептил) // Бюллетень СО РАМН. - 2006. – Т. 119, № 1. - С. 124-131.
7 Ушакова В.Г., Шпигун О.Н., Старыгин О.И. Особенности химических превращений НДМГ и его поведение в объектах окружающей среды // Ползуновский Вестник. – 2004. - № 4. – С. 177-184.
8 Батырбекова С.Е., Могильный В.В., Зебрева А.И., Наурызбаев М.К. Источники загрязнения объектов окружающей природной среды в результате деятельности космодрома «Байконур» // Вестник КазНУ. Серия химическая. – 2007. – Т. 49, № 5. – С.8-12.
9 Кузнецов В.В. Физиологические механизмы адаптации и создание стресс-толерантных растений. Проблемы экспериментальной биологии. – Минск: Тэхналогiа, 2009. – 116 с.
10 Полесская О.Г. Растительная клетка и активные формы кислорода. – М.: КДУ, 2007. – 140с.
11 Poljsak B. Strategies for reducing or preventing the generation of oxidative stress // Oxidative medicine and cellular longevity // Hindawi Pub. Corp. – 2011. – Vol. 2011. – P. 1-15.
12 Poljsak B., Milisav I. The Neglected Significance of “Antioxidative Stress” // Oxidative Medicine and Cellular Longevity. – 2012. – Vol. 2012. – P. 1-12. - DOI:10.1155/2012/480895.
13 Miura K., Tada Ya. Regulation of water, salinity and cold stress responses by salicylic acid // Frontiers in plant science. – 2014. – Vol. 5. – P. 1-12.
14 Gill S.S., Tuteja N. Reactive oxygen species and antioxidant macihinery in abiotic stress tolerance in crop plants // Plant Physiol. And Biochem. – 2010. – Vol. 48. – P. 909-930.
15 Foyer Ch.H., Noctor G. Ascorbate and glutathione: The heart of the redox hub1 // Plant Physiology. – 2011. – Vol. 155. – P. 2-18.
16 Hong S.Y., Roze L.V., Linz J.E. Oxidative stress-related transcription factors in the regulation of secondary metabolism // Toxins. – 2013. – Vol. 5. – P. 683-702.
17 Бараненко В.В. Супероксиддисмутаза в клетках растений // Цитология. – 2006. – Т. 48. – С. 465-473.
18 Foyer C.H., Noctor G. Defining robust redox signalling within the context of the plant cell // Plant, Cell and Environment. – 2015. – Vol. 38. – P. 239-239.
19 Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress and signal transduction // Annu. Rev. Plant Biol. – 2004. – Vol. 55. – P. 373-399.
20 Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // The Journal of Biological Chemistry. – 1951. – Vol 193, No 1. – Р. 265-275.
21 Heath R.L., Packer L. Photoperoxidation in isolated cloroplasts. Kinetics and stoichiometry of fatty acid peroxidation // Archives of Biochem. and Biophys. – 1968. – Vol. 125. – P. 189-198.
22 Beauchamp Ch., Fridovich I. Superoxide Dismutase Improved Assays and an Assay Applicable to Acrylamide Gels // Anal. Biochem. – 1971. – Vol. 44. – P. 276-287.
23 Практикум по биохимии /Под ред. С.Е. Северина, Г.А. Соловьевой. – 2 изд. – М.: Изд. МГУ, 1989. – 509 с.
24 Sandalio L., Dalurzo H., Gomez M., Romero-Puertas M., Del Rio L. Cadmium-induced changes in the growth and oxidative metabolism of pea plants // J. Exp. Bot. – 2001. – Vol. 52. – Р. 2115-2126.
25 Barka E.A. Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculentum) fruits in response to low amounts of UV-C // Austr. J. Plant Physiol. – 2001. – Vol. 28. – Р. 785-791.
26 Hernandez J., Rubio M., Olmos E., Ros-Barcelo A., Martinez-Gomez P. Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica) // Physiol. Plant. – 2004. – Vol. 122. – Р. 486-495.
27 Ягужинский Л.С. О токсичности гептила. – М.: Редакционно-издательский отдел ИПХФ РАН, 2014. – 128 с.
28 Горянин И.И., Котова В.Ю., Краснопеева Е.Д., Чубуков П.А., Балабанов В.П., Чалкин С.Ф., Шатров Т.Я., Завильгельский Г.Б., Манухов И.В. Определение генотоксического действия 1,1-диметилгидразина алкилирующими соединениями, возникающими при его окислении, и перекисью водорода // Труды МФТИ. – 2013. – Т. 5, № 1. – С. 103-111.
29 Havsteen B.H. The biochemistry and medical significance of the flavonoids. // Pharmacol. Ther. – 2002. – Vol. 96. – P. 67-202.
30 Farghalaly A.A., Abo-Zeid M.A.M. Evaluation of the antimutagenic effect of vitamin C against DNA damage and cytotoxicity induced by trimethyltyn in mice // Nature and science. – 2009. – Vol. 7, No 12. – P. 1-7.
31 Sram R.J., Binkova B., Rossner P.Jr. Vitamin C for DNA damage prevention // Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis. – 2012. – Vol. 733. – P.39– 49.

References

1 Seca AML, Grigore A, Pinto DCGA, Silva AMS (2014) The genus Inula and their metabolites: From ethnopharmacological to medicinal uses, Journal of Ethnopharmacology, 154(2): 286-310. DOI: 10.1016/j.jep.2014.04.010
2 Hong T, Zhao J, Dong M, Meng Y, Mu J, Yang Z (2012) Composition and bioactivity of polysaccharides from Inula britannica flower , International Journal of Biological Macromolecules, 51(4): 550–554.
3 Medini F, Bourgou S, Lalancette KG, Snoussi M, Mkadmini K, Coté I, Abdelly C, Legault J, Riadh K (2015) Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages, South African Journal of Botany, 99: 158–164.
4 Antonelli-Ushirobira TM, Blainski A, Fernandes HG, Moura-Costa GF, Costa MA, Campos LB, Salgueiro-Pagadigorria CL, Kaneshima EN, Becker TCA, Leite-Mello EVS, de Mello JCP (2015) Acute toxicity and long-term safety evaluation of the crude extract from rhizomes of Limonium brasiliense in mice and rats, Journal of Ethnopharmacology, 174: 293-298. doi:10.1016/j.jep.2015.08.022.
5 Kolumbaeva SZh, Begimbetova DA (2013) Mutagenic effects of environmental chemical pollutants [Mutagennye effekty khimicheskikh zagriaznitelei okruzhaiushchei sredy. Almaty: Қazaқ universiteti], 196 p.
6 Panin LE, Perova AIu (2006) Medico-social and environmental problems of liquid-fuel rockets (heptyl) using [Mediko-sotsial'nye i ekologicheskie problemy ispol'zovaniia raket na zhidkom toplive (geptil). Biulleten' SO RAMN] 119(1):124-131.
7 Ushakova VG, Shpigun ON, Starygin OI (2004) Features chemical transformations of ADMH and its behavior in environments [Osobennosti khimicheskikh prevrashchenii NDMG i ego povedenie v ob"ektakh okruzhaiushchei sredy. Polzunovskii Vestnik] 4: 177-184.
8 Batyrbekova SE, Mogilnyi VV, Zebreva AI, Nauryzbaev MK (2007) Sources of pollution of environmental objects as a result of the activities of the cosmodrome "Baikonur"//Vestnik Kaznu. Chemical series [Istochniki zagriazneniia obiektov okruzhaiushchei prirodnoi sredy v rezultate deiatelnosti kosmodroma «Baikonur». Vestnik KazNU. Seriia khimicheskaia] 49(5): 8-12.
9 Kuznetsov VV (2009) physiological mechanisms to adapt and create stress-tolerant plants. Problems of experimental biology [Fiziologicheskie mekhanizmy adaptatsii i sozdanie stress-tolerantnykh rastenii. Problemy eksperimental'noi biologii. Minsk: Tekhnalogia], 116 p.
10 Polesskaya OG (2007) Plant cell and reactive oxygen species [Rastitel'naya kletka i aktivnyye formy kisloroda] KDU, Moscow, Russia, pp. 140. (In Russian)
11 Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress, Oxidative medicine and cellular longevity, Hindawi Pub. Corp., 2011:1-15.
12 Poljsak B, Milisav I (2012) The Neglected Significance of “Antioxidative Stress”, Oxidative Medicine and Cellular Longevity, 2012:1-12. DOI:10.1155/2012/480895.
13 Miura K, Tada Ya (2014) Regulation of water, salinity and cold stress responses by salicylic acid, Frontiers in plant science, 5:1-12.
14 Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant macihinery in abiotic stress tolerance in crop plants, Plant Physiol. and Biochem., 48:909-930.
15 Foyer CH., Noctor G (2011) Ascorbate and glutathione: The heart of the redox hub1, Plant Physiology, 155:2-18.
16 Hong SY, Roze LV., Linz JE (2013) Oxidative stress-related transcription factors in the regulation of secondary metabolism, Toxins, 5:683-702.
17 Baranenko VV (2006) Superoxide dismutase in plant cells [Superoksiddismutaza v kletkakh rasteniy], Cytology, 48:465-473. (In Russian)
18 Foyer CH, Noctor G (2015) Defining robust redox signalling within the context of the plant cell, Plant, Cell and Environment, 38:239-239.
19 Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction, Annu. Rev. Plant Biol., 55:373-399.
20 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent, The Journal of Biological Chemistry, 193(1):265-275.
21 Heath RL, Packer L (1968) Photoperoxidation in isolated cloroplasts. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochem. and Biophys., 125:189-198.
22 Beauchamp Ch, Fridovich I (1971) Superoxide Dismutase Improved Assays and an Assay Applicable to Acrylamide Gels, Anal. Biochem., 44:276-287.
23 Severin SE, Solovieva GA (1989) Practicum in biochemistry [Praktikum po biokhimii]. MSU, Moscow, USSR, pp. 509. (In Russian)
24 Sandalio L, Dalurzo H, Gomez M, Romero-Puertas M, Del Rio L (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 52:2115-2126.
25 Barka EA (2001) Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculentum) fruits in response to low amounts of UV-C, Austr. J. Plant Physiol., 28:785-791.
26 Hernandez J, Rubio M, Olmos E, Ros-Barcelo A, Martinez-Gomez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica), Physiol. Plant., 122:486-495.
27 Yaguzhinskiy LS (2014) About heptyl toxicity [O toksichnosti geptila]. Editorial-publishing department IPHF RAS, Moscow, Russia, pp. 128. (In Russian)
28 Goryanin II, Kotova VYu, Krasnopeyeva YeD, Chubukov PA, Balabanov VP, Chalkin SF, Shatrov TYa., Zavilgelskiy GB, Manukhov IV (2013) Determination of genotoxic activity 1.1-dymethylhydrazine alkylation compounds occur when its oxidation and hydrogen peroxide [Opredeleniye genotoksicheskogo deystviya 1,1-dimetilgidrazina alkiliruyushchimi soyedineniyami, voznikayushchimi pri yego okislenii, i perekis'yu vodoroda], proc. of MIPT, 5(1):103-111
29 Havsteen BH (2002) The biochemistry and medical significance of the flavonoids, Pharmacol. Ther., 96:67-202.
30 Farghalaly AA, Abo-Zeid MAM (2009) Evaluation of the antimutagenic effect of vitamin C against DNA damage and cytotoxicity induced by trimethyltyn in mice, Nature and science, 7(12):1-7.
31 Sram RJ, Binkova B, Rossner PJr (2012) Vitamin C for DNA damage prevention, Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 733:39-49.

Downloads

Published

2018-01-01

Issue

Section

PLANT PHYSIOLOGY AND BIOCHEMISTRY

Most read articles by the same author(s)

<< < 1 2 3 4 > >>