МАТРИЦАЛЫҚ МЕТАЛЛОПРОТЕИНАЗАЛАРДЫҢ ҚҰРЫЛЫМЫ МЕН ДАМУ ПЕРСПЕКТИВАЛАРЫ

Авторлар

  • И. A. Абдельазим Айн-Шамс университеті, Каир, Египет және Ахмади ауруханасы, Кувейт мұнай компаниясы (КМК), Кувейт
  • А. С. Адилгереева Марат Оспанов атындағы Батыс Қазақстан медицина университеті, Ақтөбе, Қазақстан
  • Г. Журабекова әл-Фараби атындағы Қазақ Ұлттық университеті,Қазақстан, Алматы

DOI:

https://doi.org/10.26577/eb.2021.v87.i2.03
        148 52

Аннотация

Матрицалық металлопротеиназалар (MMП) - жасушадан тыс матрицада (ЖТМ) коллаген мен ақуыздың бөлінуіне жауапты ферменттер тобы. Коллаген дәнекер тінінің негізгі құрылымдық құрамдас бөлігі болып табылады және оның деградациясы тіндердің дамуындағы, қайта қалыптасуы және қалпына келуіндегі маңызды процесс болып табылады. MMП түрлері 6 топқа бөлінеді: коллагеназдар, желатиназалар, стромелизиндер, матрилизиндер, мембраналық MMП және жіктелмеген MMП. MMП және MMП ингибиторлары (MMПИ) қатерлі ісік сатысында бірнеше биологиялық функцияға ие. MMП-лар және MMPИ потенциалды ісікке қарсы препараттар ретінде кеңінен зерттелуде. Селективті және метаболикалық тұрақты MMP және MMP ингибиторларының қажеттілігі олардың белсенділігінің биологиялық жүйелерге әсерін анықтады. Атап айтқанда, ММП иммундық жүйемен байланысы терапияда ММП ингибиторларын қолдану әлеуетін анықтады. Белгілі болғандай, ісік жасушаларының инвазиялық өсу дәрежесі және метастазы олардың жасушадан тыс матрицаның барлық ЭКМ құрылымдарын ыдырау қабілетімен анықталады - мұны тек ММП ғана жасай алады. ECM рак клеткаларының, сондай-ақ қоршаған ортадағы стромальды, эндотелиальды және иммундық жасушалардың мінез-құлқына әсер ететіндігін атап өту маңызды. ЭКМ-нің маңызды рөлі - тіндік гомеостаз кезіндегі динамизм және иммундық жасушалардың активтенуін реттеу мүмкіндігі.

Библиографиялық сілтемелер

Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177-183. doi: 10.3109/14756366.2016.1161620. [PubMed]

Fink K, Boratyński J. Rola metaloproteinaz w modyfikacji macierzy zewnątrzkomórkowej w nowotworowym wzroście inwazyjnym, w przerzutowaniu i w angiogenezie [The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis]. Postepy Hig Med Dosw (Online). 2012; 66:609-28. Polish. doi: 10.5604/17322693.1009705. [PubMed]

Heino J. The collagen family members as cell adhesion proteins. Bioessays. 2007;29(10):1001-10. doi: 10.1002/bies.20636. [PubMed]

Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20(1):33-43. doi: 10.1016/j.tig.2003.11.004. [PubMed]

Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562-73. doi: 10.1016/j.cardiores.2005.12.002. [PubMed]

Bogaczewicz J, Sysa-Jedrzejowska A, Woźniacka A. Rola metaloproteinaz macierzy w pierwotnych ukladowych zapaleniach naczyń [Role of matrix metalloproteinases in primary systemic vasculitis]. Pol Merkur Lekarski. 2008;24(140):85-9. Polish. [PubMed]

Hrabec E, Naduk J, Strek M, et al. Kolagenazy typu IV (MMP-2 i MMP-9) i ich substraty--białka macierzy zewnatrzkomórkowej, hormony, cytokiny, chemokiny i ich receptory [Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors]. Postepy Biochem. 2007;53(1):37-45. Polish. [PubMed]

Yadav L, Puri N, Rastogi V, et al. Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev. 2014;15(3):1085-91. doi: 10.7314/apjcp.2014.15.3.1085. [PubMed]

Mannello F, Tonti G, Papa S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets. 2005;5(4):285-98. doi: 10.2174/1568009054064615. [PubMed]

Noël A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol. 2008;19(1):52-60. doi: 10.1016/j.semcdb.2007.05.011. [PubMed]

Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161-74. doi: 10.1038/nrc745. [PubMed]

Rozanov DV, Hahn-Dantona E, Strickland DK, et al. The low-density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem. 2004: 279(6):4260-8. doi: 10.1074/jbc.M311569200. [PubMed]

Krzyzanowska-Gołab D, Lemańska-Perek A, Katnik-Prastowska I. et al. Fibronectin as an active component of the extracellular matrix]. Postepy Hig Med Dosw (Online). 2007; 61:655-63. Polish. [PubMed]

Ungefroren H, Sebens S, Seidl D, et al. Interaction of tumor cells with the microenvironment. Cell Commun Signal. 2011; 9:18. doi: 10.1186/1478-811X-9-18. [PubMed]

Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3):161-8. doi: 10.1016/j.semcancer.2010.05.002. [PubMed]

Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481-3498. doi: 10.1016/j.bbamcr.2013.06.026. [PubMed]

Rundhaug JE. Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00-00, 2003. Clin Cancer Res. 2003;9(2):551-4. [PubMed]

Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta. 2010;1803(1):103-20. doi: 10.1016/j.bbamcr.2009.09.017. [PubMed]

López-Otín C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3(7):509-19. doi: 10.1038/nrm858. [PubMed]

Yoon SO, Park SJ, Yun CH, et al. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol. 2003;36(1):128-37. doi: 10.5483/bmbrep.2003.36.1.128. [PubMed]

Illman SA, Lehti K, Keski-Oja J, et al. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci. 2006;119(Pt 18):3856-65. doi: 10.1242/jcs.03157. [PubMed]

Vihinen P, Ala-aho R, Kähäri VM. Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets. 2005;5(3):203-20. doi: 10.2174/1568009053765799. [PubMed]

Vihinen P, Kähäri VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer. 2002;99(2):157-66. doi: 10.1002/ijc.10329. [PubMed]

Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol. 2006;54(2):258-65. doi: 10.1016/j.jaad.2005.10.004. [PubMed]

Coxon FP, Thompson K, Rogers MJ. Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol. 2006;6(3):307-12. doi: 10.1016/j.coph.2006.03.005. [PubMed]

Huang X, Chen S, Xu L, et al. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 2005;65(8):3470-8. doi: 10.1158/0008-5472.CAN-04-2807. [PubMed]

Agarwal A, Tressel SL, Kaimal R, et al. Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res. 2010;70(14):5880-90. doi: 10.1158/0008-5472.CAN-09-4341. [PubMed]

Wang FQ, Fisher J, Fishman DA. MMP-1-PAR1 axis mediates LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol. 2011;120(2):247-55. doi: 10.1016/j.ygyno.2010.10.032. [PubMed]

Périgny M, Bairati I, Harvey I, et al. Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer. Am J Clin Pathol. 2008;129(2):226-31. doi: 10.1309/49LA9XCBGWJ8F2KM. [PubMed]

Furuya M, Ishikura H, Kawarada Y, et al. Expression of matrix metalloproteinases and related tissue inhibitors in the cyst fluids of ovarian mucinous neoplasms. Gynecol Oncol. 2000;78(2):106-12. doi: 10.1006/gyno.2000.5856. [PubMed]

Huang KJ, Sui LH. The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Med Oncol. 2012;29(1):318-23. doi: 10.1007/s12032-010-9817-4. [PubMed]

Wang L, Jin X, Lin D, et al. Clinicopathologic significance of claudin-6, occludin, and matrix metalloproteinases -2 expression in ovarian carcinoma. Diagn Pathol. 2013; 8:190. doi: 10.1186/1746-1596-8-190. [PubMed]

Fu Z, Xu S, Xu Y, et al. The expression of tumor-derived and stromal-derived matrix metalloproteinase 2 predicted prognosis of ovarian cancer. Int J Gynecol Cancer. 2015; 25(3):356-62. doi: 10.1097/IGC.0000000000000386. [PubMed]

Wang F, Chang Z, Fan Q, Wang L. Epigallocatechin 3 gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase 2. Mol Med Rep. 2014;9(3):1085-9. doi: 10.3892/mmr.2014.1909. [PubMed]

Gonzalez-Villasana V, Fuentes-Mattei E, Ivan C, et al. Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer. Clin Cancer Res. 2015; 21(9):2127-37. doi: 10.1158/1078-0432.CCR-14-2279. [PubMed]

Zohny SF, Fayed ST. Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Med Oncol. 2010; 27(4):1246-53. doi: 10.1007/s12032-009-9366-x. [PubMed]

Wang FQ, So J, Reierstad S, Fishman DA. Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer. 2005; 114 (1):19-31. doi: 10.1002/ijc.20697. [PubMed]

Chang MC, Chen CA, Chen PJ, et al. Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem J. 2012; 442(2):293-302. doi: 10.1042/BJ20110282. [PubMed]

Zhao H, Yang Z, Wang X, et al. Triptolide inhibits ovarian cancer cell invasion by repression of matrix metalloproteinase 7 and 19 and upregulation of E-cadherin. Exp Mol Med. 2012;44(11):633-41. doi: 10.3858/emm.2012.44.11.072. [PubMed]

Wen Z, Liu H, Li M, et al. Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene. 2015; 34(10):1241-52. doi: 10.1038/onc.2014.85. [PubMed]

Wang Y, Hu C, Dong R, et al. Platelet-derived growth factor-D promotes ovarian cancer invasion by regulating matrix metalloproteinases 2 and 9. Asian Pac J Cancer Prev. 2011;12(12):3367-70. [PubMed]

Hu X, Li D, Zhang W, et al. Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch Gynecol Obstet. 2012; 286 (6):1537-43. doi: 10.1007/s00404-012-2456-6. [PubMed]

Li LN, Zhou X, Gu Y, et al. Prognostic value of MMP-9 in ovarian cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013; 14 (7):4107-13. doi: 10.7314/apjcp.2013.14.7.4107. [PubMed]

Bandaru S, Zhou AX, Rouhi P, et al. Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A. Oncogenesis. 2014; 3(9): e119. doi: 10.1038/oncsis.2014.33. [PubMed]

Pei H, Yang Y, Cui L, et al. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep. 2016; 6: 28773. doi: 10.1038/srep28773. [PubMed]

Stadlmann S, Pollheimer J, Moser PL, et al. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. Eur J Cancer. 2003; 39 (17):2499-505. doi: 10.1016/j.ejca.2003.08.011. [PubMed]

Shiomi T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. 2003; 22 (2-3):145-52. doi: 10.1023/a:1023039230052. [PubMed]

Trudel D, Desmeules P, Turcotte S, et al. Visual and automated assessment of matrix metalloproteinase-14 tissue expression for the evaluation of ovarian cancer prognosis. Mod Pathol. 2014;27(10):1394-404. doi: 10.1038/modpathol.2014.32. [PubMed]

Vos MC, Hollemans E, Ezendam N, et al. MMP-14 and CD44 in Epithelial-to-Mesenchymal Transition (EMT) in ovarian cancer. J Ovarian Res. 2016; 9(1):53. doi: 10.1186/s13048-016-0262-7. [PubMed]

Kaimal R, Aljumaily R, Tressel SL, et al. Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer Res. 2013;73(8):2457-2467. doi: 10.1158/0008-5472.CAN-12-1426. [PubMed]

Lin A, Xu HH, Xu DP, et al. Multiple steps of HLA-G in ovarian carcinoma metastasis: alter NK cytotoxicity and induce matrix metalloproteinase-15 (MMP-15) expression. Hum Immunol. 2013;74(4):439-46. doi: 10.1016/j.humimm.2012.11.021. [PubMed]

Жүктелулер

Жарияланды

2021-06-30

Как цитировать

Абдельазим I. A., Адилгереева A. S., & Журабекова G. (2021). МАТРИЦАЛЫҚ МЕТАЛЛОПРОТЕИНАЗАЛАРДЫҢ ҚҰРЫЛЫМЫ МЕН ДАМУ ПЕРСПЕКТИВАЛАРЫ. ҚазҰУ Хабаршысы. Биология сериясы, 87(2), 25–34. https://doi.org/10.26577/eb.2021.v87.i2.03

Шығарылым

Бөлім

ОБЗОРНАЯ СТАТЬЯ