СТРУКТУРА И ПЕРСПЕКТИВЫ РАЗВИТИЯ МАТРИКСНЫХ МЕТАЛЛОПРОТЕИНАЗ

Авторы

  • И. А. Абдельазим Университет Айн-Шамс, Каир, Египет, Больница Ахмади, Кувейтская нефтяная компания (КОК), Кувейт
  • А. С. Адилгереева Западно-Казахстанский медицинский университет имени Марата Оспанова, Актобе, Казахстан
  • Г. Журабекова Казахский национальный университет имени аль-Фараби, Казахстан, Алматы

DOI:

https://doi.org/10.26577/eb.2021.v87.i2.03
        188 86

Аннотация

Матриксные металлопротеиназы (ММП) - это группа ферментов, ответственных за расщепление коллагена и белка во внеклеточном матриксе (ЭКМ). Коллаген является основным структурным компонентом соединительной ткани, и его деградация является важным процессом в развитии, ремоделировании и восстановлении тканей. Семейство ММП делится на 6 групп: коллагеназы, желатиназы, стромелизины, матрилизины, мембранные ММП и неклассифицированные ММП. ММП и ингибиторы ММП (ММПИ) имеют несколько биологических функций на стадиях развития рака. MMPs и MMPI широко изучаются как потенциальные противоопухолевые препараты. Необходимость селективных и метаболически стабильных ММП и ингибиторов ММП определили влияние их активности на биологические системы. В частности, взаимосвязь ММП с иммунной системой выявило потенциальные возможности применения ингибиторов ММП в терапии. Как известно, степень инвазивного роста и метастазирование опухолевых клеток определяются их способностью расщеплять все структуры ЭКМ экстраклеточного матрикса –  это могут только ММП. Важно отметить, что ECM влияет на поведение как раковых клеток, так и стромальных, эндотелиальных и иммунных клеток окружающей среды. Фундаментально важная роль ECM - динамичность во время гомеостаза тканей и способность регулировать активацию иммунных клеток.

Библиографические ссылки

Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177-183. doi: 10.3109/14756366.2016.1161620. [PubMed]

Fink K, Boratyński J. Rola metaloproteinaz w modyfikacji macierzy zewnątrzkomórkowej w nowotworowym wzroście inwazyjnym, w przerzutowaniu i w angiogenezie [The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis]. Postepy Hig Med Dosw (Online). 2012; 66:609-28. Polish. doi: 10.5604/17322693.1009705. [PubMed]

Heino J. The collagen family members as cell adhesion proteins. Bioessays. 2007;29(10):1001-10. doi: 10.1002/bies.20636. [PubMed]

Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20(1):33-43. doi: 10.1016/j.tig.2003.11.004. [PubMed]

Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562-73. doi: 10.1016/j.cardiores.2005.12.002. [PubMed]

Bogaczewicz J, Sysa-Jedrzejowska A, Woźniacka A. Rola metaloproteinaz macierzy w pierwotnych ukladowych zapaleniach naczyń [Role of matrix metalloproteinases in primary systemic vasculitis]. Pol Merkur Lekarski. 2008;24(140):85-9. Polish. [PubMed]

Hrabec E, Naduk J, Strek M, et al. Kolagenazy typu IV (MMP-2 i MMP-9) i ich substraty--białka macierzy zewnatrzkomórkowej, hormony, cytokiny, chemokiny i ich receptory [Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors]. Postepy Biochem. 2007;53(1):37-45. Polish. [PubMed]

Yadav L, Puri N, Rastogi V, et al. Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev. 2014;15(3):1085-91. doi: 10.7314/apjcp.2014.15.3.1085. [PubMed]

Mannello F, Tonti G, Papa S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets. 2005;5(4):285-98. doi: 10.2174/1568009054064615. [PubMed]

Noël A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol. 2008;19(1):52-60. doi: 10.1016/j.semcdb.2007.05.011. [PubMed]

Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161-74. doi: 10.1038/nrc745. [PubMed]

Rozanov DV, Hahn-Dantona E, Strickland DK, et al. The low-density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem. 2004: 279(6):4260-8. doi: 10.1074/jbc.M311569200. [PubMed]

Krzyzanowska-Gołab D, Lemańska-Perek A, Katnik-Prastowska I. et al. Fibronectin as an active component of the extracellular matrix]. Postepy Hig Med Dosw (Online). 2007; 61:655-63. Polish. [PubMed]

Ungefroren H, Sebens S, Seidl D, et al. Interaction of tumor cells with the microenvironment. Cell Commun Signal. 2011; 9:18. doi: 10.1186/1478-811X-9-18. [PubMed]

Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3):161-8. doi: 10.1016/j.semcancer.2010.05.002. [PubMed]

Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481-3498. doi: 10.1016/j.bbamcr.2013.06.026. [PubMed]

Rundhaug JE. Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00-00, 2003. Clin Cancer Res. 2003;9(2):551-4. [PubMed]

Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta. 2010;1803(1):103-20. doi: 10.1016/j.bbamcr.2009.09.017. [PubMed]

López-Otín C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3(7):509-19. doi: 10.1038/nrm858. [PubMed]

Yoon SO, Park SJ, Yun CH, et al. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol. 2003;36(1):128-37. doi: 10.5483/bmbrep.2003.36.1.128. [PubMed]

Illman SA, Lehti K, Keski-Oja J, et al. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci. 2006;119(Pt 18):3856-65. doi: 10.1242/jcs.03157. [PubMed]

Vihinen P, Ala-aho R, Kähäri VM. Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets. 2005;5(3):203-20. doi: 10.2174/1568009053765799. [PubMed]

Vihinen P, Kähäri VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer. 2002;99(2):157-66. doi: 10.1002/ijc.10329. [PubMed]

Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol. 2006;54(2):258-65. doi: 10.1016/j.jaad.2005.10.004. [PubMed]

Coxon FP, Thompson K, Rogers MJ. Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol. 2006;6(3):307-12. doi: 10.1016/j.coph.2006.03.005. [PubMed]

Huang X, Chen S, Xu L, et al. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 2005;65(8):3470-8. doi: 10.1158/0008-5472.CAN-04-2807. [PubMed]

Agarwal A, Tressel SL, Kaimal R, et al. Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res. 2010;70(14):5880-90. doi: 10.1158/0008-5472.CAN-09-4341. [PubMed]

Wang FQ, Fisher J, Fishman DA. MMP-1-PAR1 axis mediates LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol. 2011;120(2):247-55. doi: 10.1016/j.ygyno.2010.10.032. [PubMed]

Périgny M, Bairati I, Harvey I, et al. Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer. Am J Clin Pathol. 2008;129(2):226-31. doi: 10.1309/49LA9XCBGWJ8F2KM. [PubMed]

Furuya M, Ishikura H, Kawarada Y, et al. Expression of matrix metalloproteinases and related tissue inhibitors in the cyst fluids of ovarian mucinous neoplasms. Gynecol Oncol. 2000;78(2):106-12. doi: 10.1006/gyno.2000.5856. [PubMed]

Huang KJ, Sui LH. The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Med Oncol. 2012;29(1):318-23. doi: 10.1007/s12032-010-9817-4. [PubMed]

Wang L, Jin X, Lin D, et al. Clinicopathologic significance of claudin-6, occludin, and matrix metalloproteinases -2 expression in ovarian carcinoma. Diagn Pathol. 2013; 8:190. doi: 10.1186/1746-1596-8-190. [PubMed]

Fu Z, Xu S, Xu Y, et al. The expression of tumor-derived and stromal-derived matrix metalloproteinase 2 predicted prognosis of ovarian cancer. Int J Gynecol Cancer. 2015; 25(3):356-62. doi: 10.1097/IGC.0000000000000386. [PubMed]

Wang F, Chang Z, Fan Q, Wang L. Epigallocatechin 3 gallate inhibits the proliferation and migration of human ovarian carcinoma cells by modulating p38 kinase and matrix metalloproteinase 2. Mol Med Rep. 2014;9(3):1085-9. doi: 10.3892/mmr.2014.1909. [PubMed]

Gonzalez-Villasana V, Fuentes-Mattei E, Ivan C, et al. Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer. Clin Cancer Res. 2015; 21(9):2127-37. doi: 10.1158/1078-0432.CCR-14-2279. [PubMed]

Zohny SF, Fayed ST. Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Med Oncol. 2010; 27(4):1246-53. doi: 10.1007/s12032-009-9366-x. [PubMed]

Wang FQ, So J, Reierstad S, Fishman DA. Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer. 2005; 114 (1):19-31. doi: 10.1002/ijc.20697. [PubMed]

Chang MC, Chen CA, Chen PJ, et al. Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem J. 2012; 442(2):293-302. doi: 10.1042/BJ20110282. [PubMed]

Zhao H, Yang Z, Wang X, et al. Triptolide inhibits ovarian cancer cell invasion by repression of matrix metalloproteinase 7 and 19 and upregulation of E-cadherin. Exp Mol Med. 2012;44(11):633-41. doi: 10.3858/emm.2012.44.11.072. [PubMed]

Wen Z, Liu H, Li M, et al. Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene. 2015; 34(10):1241-52. doi: 10.1038/onc.2014.85. [PubMed]

Wang Y, Hu C, Dong R, et al. Platelet-derived growth factor-D promotes ovarian cancer invasion by regulating matrix metalloproteinases 2 and 9. Asian Pac J Cancer Prev. 2011;12(12):3367-70. [PubMed]

Hu X, Li D, Zhang W, et al. Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch Gynecol Obstet. 2012; 286 (6):1537-43. doi: 10.1007/s00404-012-2456-6. [PubMed]

Li LN, Zhou X, Gu Y, et al. Prognostic value of MMP-9 in ovarian cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013; 14 (7):4107-13. doi: 10.7314/apjcp.2013.14.7.4107. [PubMed]

Bandaru S, Zhou AX, Rouhi P, et al. Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A. Oncogenesis. 2014; 3(9): e119. doi: 10.1038/oncsis.2014.33. [PubMed]

Pei H, Yang Y, Cui L, et al. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep. 2016; 6: 28773. doi: 10.1038/srep28773. [PubMed]

Stadlmann S, Pollheimer J, Moser PL, et al. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. Eur J Cancer. 2003; 39 (17):2499-505. doi: 10.1016/j.ejca.2003.08.011. [PubMed]

Shiomi T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. 2003; 22 (2-3):145-52. doi: 10.1023/a:1023039230052. [PubMed]

Trudel D, Desmeules P, Turcotte S, et al. Visual and automated assessment of matrix metalloproteinase-14 tissue expression for the evaluation of ovarian cancer prognosis. Mod Pathol. 2014;27(10):1394-404. doi: 10.1038/modpathol.2014.32. [PubMed]

Vos MC, Hollemans E, Ezendam N, et al. MMP-14 and CD44 in Epithelial-to-Mesenchymal Transition (EMT) in ovarian cancer. J Ovarian Res. 2016; 9(1):53. doi: 10.1186/s13048-016-0262-7. [PubMed]

Kaimal R, Aljumaily R, Tressel SL, et al. Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer Res. 2013;73(8):2457-2467. doi: 10.1158/0008-5472.CAN-12-1426. [PubMed]

Lin A, Xu HH, Xu DP, et al. Multiple steps of HLA-G in ovarian carcinoma metastasis: alter NK cytotoxicity and induce matrix metalloproteinase-15 (MMP-15) expression. Hum Immunol. 2013;74(4):439-46. doi: 10.1016/j.humimm.2012.11.021. [PubMed]

Загрузки

Как цитировать

Абдельазим I. A., Адилгереева A. S., & Журабекова G. (2021). СТРУКТУРА И ПЕРСПЕКТИВЫ РАЗВИТИЯ МАТРИКСНЫХ МЕТАЛЛОПРОТЕИНАЗ. Вестник КазНУ. Серия биологическая, 87(2), 25–34. https://doi.org/10.26577/eb.2021.v87.i2.03