Бактериальные заболевания – лимитирующий фактор развития аквакультуры осетровых рыб

Авторы

  • A. K. Bissenbaev Казахский национальный университет имени аль-Фараби, г. Алматы, Казахстан
  • S. S. Bakiyev Казахский национальный университет имени аль-Фараби, г. Алматы, Казахстан

DOI:

https://doi.org/10.26577/eb.2020.v82.i1.01
        255 149

Аннотация

В соответствии с концепцией по переходу Казахстана к «Зеленой экономике», основной задачей в области развития рыбного хозяйства является сохранение биологического разнообразия водоемов, где особое внимание уделяется сохранению осетровых видов рыб. В этой связи создаются условия для развития товарного рыбоводства, что снизит промысловую нагрузку на естественные водоемы. В рамках Госпрограммы развития АПК прогнозируется рост объемов аквакультуры с 1,6 тысяч тонн в 2017 году до 5 тысяч тонн к 2021 году (https://strategy2050.kz/ru/news/51441/). Таким образом, значение аквакультуры увеличивается. Однако, высокая плотность отдельных видов на фермах может приводит к резкому увеличению численности патогенных микроорганизмов и массовой смертности рыб, поэтому являются наиболее экономически значимым препятствием для развития аквакультуры. Для снижения потерь при воспроизводстве водных объектов практически повсеместно проводятся профилактические или лечебные мероприятия с использованием антибиотиков, которые добавляют чаще всего в корм. При этом в пищевом сырье и продукции из объектов аквакультуры отмечается остаточное содержание антибиотиков, применяемых в терапии и профилактике бактериальных инфекций, что приводит к поступлению в организм потребителя и окружающую среду различных антибиотиков, используемых в разных странах при товарном выращивании объектов.  Таким образом, эти антибиотики, оказавшиеся в организме человека, а также в окружающей среде стимулируют появление бактерий с множественной лекарственной устойчивостью. Эндолизины представляют собой потенциальную замену антибиотикам почти без побочных эффектов. Эндолизины не влияют на представителей нормальной микрофлоры организма. Кроме этого, очень важным аспектом является невозможность развития к ним резистентности.

Таким образом, эндолизины обладают огромным потенциалом в борьбе с различными возбудителями, являясь отличной альтернативой антибиотикам.

 

Ключевые слова: аквакультура, бактериальные заболевания, антибиотики, бактериофаг, эндолизин.

Библиографические ссылки

1. Chebanov M., Galich E. Sturgeon Hatchery Manual / FAO Fisheries and Aquaculture Technical Paper. - 2013. - No. 558. Ankara, FAO. - 305 pp.
2. Hung S. S. O. Recent advances in sturgeon nutrition // Animal Nutrition, - 2017. – Vol. 3(3), - P. 191–204. doi:10.1016/j.aninu.2017.05.005.
3. Chebanov M., Rosenthal H., Gessner J., Van Anrooy R., Doukakis P., Pourkazemi M., Williot P. Sturgeon hatchery practices and management for release–Guidelines / FAO Fisheries and Aquaculture Technical Paper. - No. 570. Ankara, FAO. 2011. - 110 pp.
4. FAO. 2018. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.
5. Timirkhanov S., Chaikin B., Makhambetova Zh., Thorpe A., Anrooy van R. Fisheries and aquaculture in the Republic of Kazakhstan: a review / Food and Agriculture Organization of the United Nations. Ankara. - 2010. – 76 p.
6. Sergaliyev N., Tumenov A., Sariev B., Kakishev M., Bakiyev S. Morphological and Biological Features of Ship Sturgeon Replacement and Breeding Stock of Ural-Caspian Population, Grown Under Conditions of Controlled Systems // Research Journal of Pharmaceutical, Biological and Chemical Sciences. – India. - 2016. – Vol.7 (6). - P. 2990-2998.
7. Сергалиев Н.Х., Туменов А.Н., Сариев Б.Т., Шукуров М.Ж., Бакиев С.С. Особенности формирования и содержания ремонтно-маточных стад осетровых рыб Урало-Каспийской популяции в регулируемых условиях / Монография – г. Уральск: Зап.-Казахст.аграр.-техн.ун.-т им. Жангир хана. - 2017. – 164 с.
8. Сергалиев Н.Х., Абсатиров Г.Г., Сариев Б.Т., Туменов А.Н., Нуржанова Ф.Х. Применение лечебно-профилактических кормов при выращивании осетровых рыб в системах с замкнутым водоснабжением: монография / – Уральск: Зап.-Казахст. аграр.-техн. ун-т им. Жангир хана. - 2017. – 120 с.
9. 16.09.2016 Комплекс по промышленному выращиванию осетров создан в Уральске [Электронный ресурс] http://www.nauka.kz/page.php?page_id=16&lang=1&news_id=7510, свободный. – Загл. с экрана.
10. Дом для царь-рыбы [Электронный ресурс] http://ibirzha.kz/dom-dlya-tsar-ryby/, свободный. – Загл. с экрана.
11. Ortuño J., Esteban, M. A., Meseguer, J. Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L.) innate immune response // Fish & Shellfish Immunology, - 2001. – Vol. 11(2), - P. 187–197. doi:10.1006/fsim.2000.0304.
12. Kennedy D. A., Kurath G., Brito I. L., Purcell M. K., Read A. F., Winton J. R., Wargo A. R. Potential drivers of virulence evolution in aquaculture // Evolutionary Applications, - 2016. – Vol. 9(2), - P. 344–354. doi:10.1111/eva.12342.
13. Rodger H. D. Fish Disease Causing Economic Impact in Global Aquaculture // Fish Vaccines. - 2016. – P. 1–34. doi:10.1007/978-3-0348-0980-1_1.
14. W. Bank, Reducing Disease Risk in Aquaculture. Agriculture and Environmental Services Discussion Paper 09, World Bank Report Number 88257-GLB, World Bank Group, Washington, DC. - 2014.
15. Austin B., Austin D. Characteristics of the pathogens: Gram-negative bacteria. (n.d.) // Bacterial Fish Pathogens. 2007. - P. 81–150. doi:10.1007/978-1-4020-6069-4_4.
16. Sergaliyev N. H., Absatirov G. G., Tumenov A. N., Sariyev B. T., Ginayatov N. S. Nosological Description of Fish Pathologies in RAS // Journal of Pharmaceutical Sciences and Research. – 2017. - Vol. 9(9). – P. 1637-1641.
17. Trust T.J. Bull L. M., Currie B. R., Buckley J. T. Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri) // Fish. Res. Board Can. - 1974. - Vol. 36(10). – P. 1174–1179.
18. Karunasagar G.M., Rosalind G.M., Karunasagar I. Immunological response of the Indian major carps to Aeromonas hydrophila vaccine // Fish Shellfish Immunol. - 1993. –Vol. 3. – P. 413-7. doi.org/10.1111/j.1365–2761. 1991.tb00841.x.
19. Angka S. L., Lam T. L., Sin Y. M. Some virulence characteristics of Aeromonas hydrophila in walking catfish (Clarias gariepinus) // Aquaculture. – 1995. – Vol. 130. – P. 103-112.
20. Wahli T., Burr S. E., Pugovkin D., Mueller O., Frey, J. Aeromonas sobria, a causative agent of disease in farmed perch, Perca fluviatilis L. // Journal of Fish Diseases. - 2005. – Vol. 28(3). – P. 141–150. doi:10.1111/j.1365-2761.2005.00608.x.
21. Zhang D., Xu D.-H., Shoemaker C. Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila // Aquaculture Reports. - 2016. – Vol. 3. – P. 18–23. doi:10.1016/j.aqrep.2015.11.003.
22. La Parta S.E., Plant K.P., Alcorn S., Ostland V., Winton J. An experimental vaccine against Aeromonas hydrophila can induce protection in rainbow trout, Oncorhynchus mykiss (Walbaum) // J Fish Dis. – 2010. – Vol. 33. – P. 143-151.
23. Gholamhosseini A., Taghadosi V., Shiry N., Akhlaghi M., Sharifiyazdi H., Soltanian, S., Ahmadi N. First isolation and identification of Aeromonas veronii and Chryseobacterium joostei from reared sturgeons in Fars province, Iran // Veterinary Research Forum. - 2018. – Vol. 9(2), - P. 113-119. doi: 10.30466/vrf.2018.30826.
24. Shane S.M, Gifford D.H. Prevalence and pathogenicity of Aeromonas hydrophila // Avian Dis. – 1985. - P. 681-9.
25. Janda J. M., Guthertz L. S., Kokka R. P., Shimada T. Aeromonas species in septicemia: laboratory characteristics and clinical observations // Clin. Infect. Dis. – 1994. – Vol. 19. – P. 77-83.
26. Janda J. M., Abbott S. L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection // Clinical Microbiology Reviews. - 2010. – Vol. 23(1). – P. 35–73. doi:10.1128/cmr.00039-09.
27. Bloch S., Monteil, H. Purification and characterization of Aeromonas hydrophila beta-hemolysin // Toxicon. -1989. – Vol. 27(12). – P. 1279–1287. doi:10.1016/0041-0101(89)90059-7.
28. Давыдов О.Н., Исаева Н.М., Куровская Л.Я. Ихтиолпатологическая энциклопедия / – Киев, 2000. – 164 с.
29. Гаевская А.В. Паразитология и патология рыб: энциклопедический словарь – справочник (издание второе, дополненное и переработанное) / – Севастополь: ЭКОСИ-Гидрофизика. - 2006. – 396 с.
30. Xu J., Zeng X., Jiang N., Zhou Y., Zeng L., Pseudomonas alcaligenes infection and mortality in cultured Chinese sturgeon, Acipenser sinensis // Aquaculture. – 2015. doi: 10.1016/j.aquaculture.2015.04.014.
31. Noga E.J. Fish disease – diagnosis and treatment. 2nd Edn., New Jersey, Hoboken, Wiley-Blackwell. – 2010. – P. 197-350.
32. Pekala-Safinska A. Contemporary threats of bacterial infections in freshwater fish // Journal of Veterinary Research. - 2018. – Vol. 62(3). – P. 261–267. doi:10.2478/jvetres-2018-0037.
33. Бороздина И.Б. Сравнительная характеристика бактерий рода Pseudomonas при культивировании на искусственных питательных средах // Вестник ВГУ, Серия: Химия. Биология. Фармация. - 2010. - №2. – С. 67-71.
34. Lombardi G., Luzzaro F., Docquier J.-D., Riccio M. L., Perilli M., Coli A., Amicosante G., Rossolini G., Toniolo A. Nosocomial Infections Caused by Multidrug-Resistant Isolates of Pseudomonas putida Producing VIM-1 Metallo-beta-Lactamase // Journal of Clinical Microbiology. - 2002. – Vol. 40(11), - P. 4051–4055. doi:10.1128/jcm.40.11.4051-4055.2002
35. Bouallègue O. Outbreak of Pseudomonas putida bacteraemia in a neonatal intensive care unit // Journal of Hospital Infection. - 2004. – Vol. 57(1), - P. 88–91. doi:10.1016/j.jhin.2004.01.024.
36. Perz J. F., Craig A. S., Stratton C. W., Bodner S. J., Phillips W. E., Schaffner W. Pseudomonas putida Septicemia in a Special Care Nursery Due to Contaminated Flush Solutions Prepared in a Hospital Pharmacy // Journal of Clinical Microbiology. - 2005. – Vol. 43(10). – P. 5316–5318. doi:10.1128/jcm.43.10.5316-5318.2005.
37. Allen D.A., Austin B., Colwell R.R. Numerical taxonomy of bacterial isolates associated with a freshwater fishery // Journal of General Microbiology. – 1983. – Vol. 129. – P. 2043-2062.
38. Merril C. R., Scholl D., Adhya S. L. The prospect for bacteriophage therapy in Western medicine // Nature Reviews Drug Discovery. - 2003. – Vol. 2(6). – P. 489–497. doi:10.1038/nrd1111.
39. Хайтович А.Б., Ведьмина Е.А., Власова И.В. Чувствительность к антибиотикам вибрионов и аэромонад // Антибиотики и химиотерапия. – 1992. – Т. 37. - №3. – С. 10 – 13.
40. Мирошников К.А., Чертков О. В., Назаров П. А., Месянжинов В. В. Пептидогликанлизирующие ферменты бактериофагов - перспективные противобактериальные агенты // Успехи биологической химии. - 2006. – Т. 46. - C. 65–98.
41. Jones B. L., Wilcox M. H. Aeromonas infections and their treatment // Journal of Antimicrobial Chemotherapy. - 1995. – Vol. 35(4). – P. 453–461. doi:10.1093/jac/35.4.453.
42. Kim S. E., Park S.-H., Park H. B., Park K.-H., Kim S.-H., Jung S.-I., Jang H.C., Kang S. J. Nosocomial Pseudomonas putida Bacteremia: High Rates of Carbapenem Resistance and Mortality // Chonnam Medical Journal. - 2012. – Vol. 48(2), 91. doi:10.4068/cmj.2012.48.2.91.
43. Patil S, T. M. Antimicrobial Sensitivity Pattern of Pseudomonas fluorescens after Biofield Treatment // Journal of Infectious Diseases & Therapy. - 2015. – Vol. 03(03). doi:10.4172/2332-0877.1000222.
44. Kittinger C., Lipp M., Baumert R., Folli B., Koraimann G., Toplitsch D., Liebmann A., Grisold A., Farnleitner A., Kirschner A., Zarfel G. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube // Frontiers in Microbiology. - 2016. 7. doi:10.3389/fmicb.2016.00586.
45. Doernberg S. B., Lodise T. P., Thaden J. T., Munita J. M., Cosgrove S. E., Arias C.A., Boucher H.W., Corey G.R., Lowy F.D., Murray B., Miller L.G. Gram-Positive Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group // Clinical Infectious Diseases, 64(suppl_1). - 2017. – P. 24–29. doi:10.1093/cid/ciw828.
46. Running out antibiotics [Электронный ресурс] http://www9.who.int/mediacentre/news/ releases/2017/running-out-antibiotics/ru/, свободный. – Загл. с экрана.
47. Ackermann H. W. Frequency of morphological phage descriptions in the year 2000 // Arch. Virol. – Vol. 146. – P. 843-857.
48. Barrow P. A., Soothill J. S. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential // Trends Microbiol. – 1997. – Vol. 5. – P. 268–271.
49. Perros M. A sustainable model for antibiotics. Science. – 2015. – Vol. 347. – P. 1062–1064. doi: 10.1126/science.aaa3048.
50. Nakai T., Sugimoto R., Park K.H., Matsuoka S., Mori K., Nishioka T., Maruyama K. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail // Dis. Aquat. Organ. – 1999. – Vol. 37. – P. 33–41.
51. Nakai T., Park S.C. Bacteriophage therapy of infectious diseases in aquaculture // Res. Microbiol. – 2002. – Vol. 153. – P. 13–18.
52. Defoirdt T., Sorgeloos P., Bossier P. Alternatives to antibiotics for the control of bacterial disease in aquaculture // Curr. Opin. Microbiol. – 2011. – Vol. 14. – P. 251–258.
53. Oliveira J., Castilho F., Cunha A., Pereira M.J. Bacteriophage therapy as a bacterial control strategy in aquaculture // Aquac. Int. – 2012. – Vol. 20. – P. 879–910.
54. Richards G.P. Bacteriophage remediation of bacterial pathogens in aquaculture: A review of the technology // Bacteriophage. - 2014. – Vol. 4 e975540.
55. Kalatzis P. G., Castillo D., Katharios P., Middelboe M. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy // Antibiotics (Basel, Switzerland). - 2018. – Vol. 7(1), 15. https://doi.org/10.3390/antibiotics7010015.
56. Vinod M.G., Shivu M.M., Umesha K.R., Rajeeva B.C., Krohne G., Karunasagar I., Karunasagar I. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments // Aquaculture. – 2006. –Vol. 255. – P. 117–124.
57. Oakey H.J., Owens L. A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia // J. Appl. Microbiol. – 2000. – Vol. 89. – P. 702–709.
58. Karunasagar I., Shivu M.M., Girisha S.K., Krohne G., Karunasagar I. Biocontrol of pathogens in shrimp hatcheries using bacteriophages // Aquaculture. – 2007. – Vol. 268. – P. 288–292.
59. Phumkhachorn P. Rattanachaikunsopon P. Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi // Afr. J. Microbiol. – 2010. – Vol. 4. – P. 1794–1800.
60. Stalin N., Srinivasan P. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India // Vet. Microbiol. – 2017. – Vol. 207. – P. 83–96.
61. Wang Y., Barton M., Elliott L., Li X., Abraham S., Dea M.O., Munro J. Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata) // Aquaculture – 2017. – Vol. 473. – P. 251–258.
62. Crothers-Stomps C., Høj L., Bourne D.G., Hall M.R., Owens L. Isolation of lytic bacteriophage against Vibrio harveyi // J. Appl. Microbiol. – 2010. – Vol. 108. – P. 1744–1750.
63. Rong R., Lin H., Wang J., Khan M.N., Li M. Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration // Aquaculture. – 2014. – Vol. 418–419, -P. 171–176.
64. Lomelí-Ortega C.O., Martínez-Díaz S.F. Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae // Aquaculture. – 2014. – Vol. 434. – P. 208–211.
65. Zhang J., Cao Z., Li Z., Wang L., Li H., Wu F., Jin L., Li X., Li S., Xu Y. Effect of bacteriophages on Vibrio alginolyticus infection in the sea cucumber, Apostichopus japonicus (Selenka) // J. World Aquac. Soc. – 2015. – Vol. 46. – P. 149–158.
66. Li Z., Li X., Zhang J., Wang X., Wang L., Cao Z., Xu Y. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicas // Fish Shellfish Immunol. – 2016. – Vol. 54. – P. 302–311.
67. Li Z., Zhang J., Li X., Wang X., Cao Z., Wang L., Xu Y. Efficiency of a bacteriophage in controlling Vibrio infection in the juvenile sea cucumber Apostichopus japonicas // Aquaculture. - 2016. – Vol. 451. – P. 345–352.
68. Higuera G., Bastías R., Tsertsvadze G., Romero J., Espejo R.T. Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar // Aquaculture. – 2013. – Vol. 392–395. – P. 128–133.
69. Silva Y.J., Costa L., Pereira C., Mateus C., Cunha A., Calado R., Gomes N.C.M., Pardo M.A., Hernandez I., Almeida A. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production // PLoS ONE. – 2014. – Vol. 9, e114197.
70. Cohen Y., Joseph Pollock F., Rosenberg E., Bourne D.G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus // Microbiologyopen. – 2013. – Vol. 2. – P. 64–74.
71. Ryan E.M., Gorman S.P., Donnelly R.F., Gilmore B.F. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy // J. Pharm. Pharmacol. – 2011. – Vol. 63. – P. 1253–1264.
72. Madsen L., Bertelsen S.K., Dalsgaard I., Middelboe M. Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: Implications for their use in phage therapy // Appl. Environ. Microbiol. – 2013. – Vol. 79. – P. 4853–4861.
73. Christiansen R.H., Dalsgaard I., Middelboe M., Lauritsen A.H., Madsen L. Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: Implications for disease control in aquaculture // Appl. Environ. Microbiol. – 2014. – Vol. 80. – P. 7683–7693.
74. Suttle C.A. Viruses in the sea // Nature. - 2005. – Vol. 437. – P. 356–361.
75. Samson J.E., Magadán A.H., Sabri M., Moineau S. Revenge of the phages: Defeating bacterial defences // Nat. Rev. Microbiol. – 2013. – Vol. 11. – P. 675–687.
76. Chan B.K., Abedon S.T., Loc-carrillo C. Phage cocktails and the future of phage therapy // Future Microbiol. – 2013. – P. 769–783.
77. Mateus L., Costa L., Silva Y.J., Pereira C., Cunha A., Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture // Aquaculture. – 2014. – Vol. 424–425. – P. 167–173.
78. Houte S. van, Buckling A., Westra E.R. Evolutionary ecology of prokaryotic immune mechanisms // Microbiol. Mol. Biol. Rev. – 2016. – Vol. 80. – P. 745–763.
79. Westra E.R., Swarts D.C., Staals R.H.J., Jore M.M., Brouns S.J.J., van der Oost J. The CRISPRs, they are A-Changin’: How prokaryotes generate adaptive immunity // Annu. Rev. Genet. – 2012. – Vol. 46. – P. 311–339.
80. Labrie S.J., Samson J.E., Moineau S. Bacteriophage resistance mechanisms // Nat. Rev. Microbiol. – 2010. – Vol. 8. – P. 317–327.
81. Love M., Bhandari D., Dobson R., Billington C. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care // Antibiotics. - 2018. - Vol. 7(1), 17. doi:10.3390/antibiotics7010017.
82. Rakhuba D.V., Kolomiets E.I., Szwajcer Dey E., Novik G.I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell // Polish J. Microbiol. – 2010. – Vol. 59. – P. 145–155.
83. Brussow H, Canchaya C, Hardt W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion // Microbiol. Mol. Biol. Rev. – 2004. – Vol. 68 (3). – P. 560–602.
84. Davis B. M., Waldor M. K. Filamentous phages linked to virulence of Vibrio cholera // Curr. Opin. Microbiol. - 2003. – Vol. 6. – P. 35–42. doi: 10.1016/S1369-5274(02)00005-X.
85. Jürgens U.J., Drews G., Weckesser J. Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714 // J Bacteriol. - 1983 Apr. – Vol. 154(1). – P. 471-8. PMID: 6131881; PMCID: PMC217481.
86. Wang I.-N., Smith D. L., Young R. Holins: The Protein Clocks of Bacteriophage Infections // Annual Review of Microbiology. – 2000. – Vol. 54(1). – P. 799–825. doi:10.1146/annurev.micro.54.1.799.
87. Vollmer W., Holtje J.-V. The Architecture of the Murein (Peptidoglycan) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal Layer(s)? // Journal of Bacteriology. - 2004. – Vol. 186 (18). – P. 5978–5987. doi:10.1128/jb.186.18.5978-5987.2004.
88. Vollmer W., Blanot D., de Pedro, M.A. Peptidoglycan structure and architecture // FEMS Microbiol. Rev. – 2008. – Vol. 32. - P. 149–167.
89. Beveridge T.J. Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles // J. Bacteriol. - 1999. - Vol. 181, - No. 16. - P. 4725–4733.
90. Borysowski J., Weber-Dąbrowska B., Górski A. Bacteriophage Endolysins as a Novel Class of Antibacterial Agents // Experimental Biology and Medicine. - 2006. – Vol. 231(4). – P. 366–377. doi:10.1177/153537020623100402.
91. Schmelcher M., Donovan D.M., Loessner M.J. Bacteriophage endolysins as novel antimicrobials // Future Microbiol. – 2012. – Vol. 7. – P. 1147-71; PMID: 23030422; http://dx.doi.org/10.2217/fmb.12.97.
92. Oliveira H., Melo L. D. R., Santos S. B., Nobrega F. L., Ferreira E. C., Cerca N., Azeredo J., Kluskens L. D. Molecular Aspects and Comparative Genomics of Bacteriophage Endolysins // Journal of Virology. – 2013. – Vol. 87(8). – P. 4558–4570. doi:10.1128/jvi.03277-12.
93. Kretzer J.W., Lehmann R., Schmelcher M., Banz M., Kim K.P., Korn C., Loessner M.J. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells // Appl. Environ. Microbiol. – 2007. – Vol. 73. – P. 1992–2000.
94. The White House. National Action Plan for Combating Antibiotic-Resistant Bacteria. Interagency Task Force for Combating Antibiotic-Resistant Bacteria; U.S. Office of the Press Secretary: Washington, DC, USA, 2015.
95. O'Flaherty S., Coffey A., Meaney W., Fitzgerald G.F., Ross R.P. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus // J. Bacteriol. – 2005. – 187. – P. 7161–7164.
96. Jun S.Y., Jung G.M., Son J.-S., Yoon S.J., Choi Y.-J. Kang S.H. Comparison of the antibacterial properties of phage endolysins SAL-1 and Lysk // Antimicrob. Agents Chemother. – 2011. – 55. – P. 1764–1767.
97. Jun S.Y., Jung G.M., Yoon S.J., Choi Y.-J., Koh W.S., Moon K.S., Kang S.H. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient // Antimicrob. Agents Chemother. – 2014. – Vol. 58. – P. 2084–2088.
98. Jun S.Y., Jung G.M., Yoon S.J., Youm S.Y., Han H.-Y., Lee J.-H., Kang S.H. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period // Clin. Exp. Pharmacol. Physiol. – 2016. – Vol. 43. – P. 1013–1016.
99. Oliveira H., São-José C., Azeredo J. Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy // Viruses. – 2018. – Vol. 10. – No. 6. – P. 292.
100. Gaeng S., Scherer S., Neve H., Loessner M. J. Gene Cloning and Expression and Secretion of Listeria monocytogenes Bacteriophage-Lytic Enzymes in Lactococcus lactis // Applied and Environmental Microbiology. - 2000. – Vol. 66 (7). – P. 2951–2958. doi:10.1128/aem.66.7.2951-2958.2000.
101. Zimmer M., Vukov N., Scherer S., Loessner, M. J. The Murein Hydrolase of the Bacteriophage 3626 Dual Lysis System Is Active against All Tested Clostridium perfringens Strains // Applied and Environmental Microbiology. – 2002. – Vol. 68(11). – P. 5311–5317. doi:10.1128/aem.68.11.5311-5317.2002.
102. Celia L. K., Nelson D., Kerr D. E. Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis // Veterinary Microbiology. - 2008. – Vol. 130 (1-2). – P. 107–117. doi:10.1016/j.vetmic.2007.12.004.
103. Obeso J. M, Martinez B., Rodriguez A., Garcia P. Lytic activity of the recombinant staphylococcal bacteriophage phiH5 endolysin active against Staphylococcus aureus in milk // Int. J. Food Microbiol. - 2008. – Vol. 128(2). – P. 212–218.
104. Garcia P., Martinez B., Rodriguez L., Rodriguez A. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk // Int. J. Food Microbiol. – 2010. – Vol. 141(3). – P. 151–155.
105. Hoopes J. T., Stark C. J., Kim H. A., Sussman D. J., Donovan D. M., Nelson D. C. Use of a Bacteriophage Lysin, PlyC, as an Enzyme Disinfectant against Streptococcus equi // Applied and Environmental Microbiology. - 2009. – Vol. 75(5). – P. 1388–1394. doi:10.1128/aem.02195-08
106. Wang Y., Sun J. H., Lu C. P. Purified Recombinant Phage Lysin LySMP: An Extensive Spectrum of Lytic Activity for Swine Streptococci // Current Microbiology. - 2009. – Vol. 58(6). – P. 609–615. doi:10.1007/s00284-009-9379-x.
107. McGowan, S., Buckle, A. M., Mitchell, M. S., Hoopes, J. T., Gallagher, D. T., Heselpoth, R. D., Shenb Y., Reboula C. F., Lawa R. H. P., Fischettid V. A., Whisstock J. C., Nelson, D. C. X-ray crystal structure of the streptococcal specific phage lysin PlyC // Proceedings of the National Academy of Sciences. - 2012. – Vol. 109 (31). – P. 12752–12757. doi:10.1073/pnas.1208424109.

References
1. Chebanov M., Galich E. (2013) Sturgeon Hatchery Manual. FAO Fisheries and Aquaculture Technical Paper, no. 558. Ankara, FAO, 305 pp.
2. Hung S. S. O. (2017) Recent advances in sturgeon nutrition. Animal Nutrition, vol. 3(3), pp. 191–204. doi:10.1016/j.aninu.2017.05.005.
3. Chebanov M., Rosenthal H., Gessner J., Anrooy R., Doukakis P., Pourkazemi M., Williot P. (2011) Sturgeon hatchery practices and management for release Guidelines. FAO Fisheries and Aquaculture Technical Paper. Ankara, FAO, no. 570, 110 pp.
4. FAO. (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.
5. Timirkhanov S., Chaikin B., Makhambetova Zh., Thorpe A., Anrooy van R. (2010) Fisheries and aquaculture in the Republic of Kazakhstan: a review. Food and Agriculture Organization of the United Nations. Ankara, 76 pp.
6. Sergaliev N., Tumenov A., Sariev B., Kakishev M., Bakiyev S. (2016) Morphological and Biological Features of Ship Sturgeon Replacement and Breeding Stock of Ural-Caspian Population, Grown Under Conditions of Controlled Systems. Research Journal of Pharmaceutical, Biological and Chemical Sciences. – India, vol. 7(6), pp. 2990-2998.
7. Sergaliyev N. H., Tumenov A. N., Sariev B. T., Shukurov M. Zh., Bakiyev S. S. (2017) Osobennosti formirovaniya i soderzhaniya remontno-matochnyh stad osetrovyh ryb Uralo-Kaspijskoj populyacii v reguliruemyh usloviyah [Features of formation and maintenance of repair and breeding herds of sturgeon of the Ural-Caspian population in regulated conditions]. Monografiya – g. Ural'sk: Zap.-Kazahst.agrar.-tekhn.un.-t im. ZHangir hana, 164 p.
8. Sergaliev N.H., Absatirov G.G., Sariev B.T., Tumenov A.N., Nurzhanova F.H. (2017) Primenenie lechebno-profilakticheskih kormov pri vyrashchivanii osetrovyh ryb v sistemah s zamknutym vodosnabzheniem [Application of therapeutic and prophylactic feed for growing sturgeon in systems with closed water supply] monografiya. Ural'sk: Zap.-Kazahst. agrar.-tekhn. un-t im. ZHangir hana, 120 p.
9. 16.09.2016 A complex for the industrial cultivation of sturgeon was created in Uralsk [Electronic resource] http://www.nauka.kz/page.php?page_id=16&lang=1&news_id=7510, – free. The title. from the screen.
10. Home for the king fish [Electronic resource] http://ibirzha.kz/dom-dlya-tsar-ryby/, – free. The title. from the screen.
11. Ortuño J., Esteban, M. A., Meseguer J. (2001) Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L.) innate immune response. Fish & Shellfish Immunology, vol. 11(2), pp. 187–197. doi:10.1006/fsim.2000.0304.
12. Kennedy D. A., Kurath G., Brito I. L., Purcell M. K., Read A. F., Winton J. R., Wargo A. R. (2016) Potential drivers of virulence evolution in aquaculture. Evolutionary Applications, vol. 9(2), pp. 344–354. doi:10.1111/eva.12342.
13. Rodger H. D. (2016) Fish Disease Causing Economic Impact in Global Aquaculture. Fish Vaccines, pp. 1–34. doi:10.1007/978-3-0348-0980-1_1.
14. W. Bank (2014) Reducing Disease Risk in Aquaculture. Agriculture and Environmental Services Discussion Paper 09, World Bank Report Number 88257-GLB, World Bank Group, Washington, DC.
15. Austin B., Austin D. (2007) Characteristics of the pathogens: Gram-negative bacteria. (n.d.) Bacterial Fish Pathogens, pp. 81–150. doi:10.1007/978-1-4020-6069-4_4.
16. Sergaliyev N. H., Absatirov G. G., Tumenov A. N., Sariyev B. T., Ginayatov N. S. (2017) Nosological Description of Fish Pathologies in RAS. Journal of Pharmaceutical Sciences and Research, vol. 9(9), pp. 1637-1641.
17. Trust T.J. Bull L. M., Currie B. R., Buckley J. T. (1974) Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri). Fish. Res. Board Can, vol. 36(10), pp. 1174–1179.
18. Karunasagar G.M., Rosalind G.M., Karunasagar I. (1993) Immunological response of the Indian major carps to Aeromonas hydrophila vaccine. Fish Shellfish Immunol, vol. 3, pp. 413-7. doi.org/10.1111/j.1365–2761. 1991.tb00841.x.
19. Angka S. L., Lam T. L., Sin Y. M. (1995) Some virulence characteristics of Aeromonas hydrophila in walking catfish (Clarias gariepinus). Aquaculture, vol. 130, pp. 103-112.
20. Wahli T., Burr S. E., Pugovkin D., Mueller O., Frey, J. (2005) Aeromonas sobria, a causative agent of disease in farmed perch, Perca fluviatilis L. Journal of Fish Diseases, vol. 28(3), pp. 141–150. doi:10.1111/j.1365-2761.2005.00608.x.
21. Zhang D., Xu D.-H., Shoemaker C. (2016) Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquaculture Reports, vol. 3, pp. 18–23. doi:10.1016/j.aqrep.2015.11.003.
22. La Parta S.E., Plant K.P., Alcorn S., Ostland V., Winton J. (2010) An experimental vaccine against Aeromonas hydrophila can induce protection in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis, vol. 33, pp. 143-151.
23. Gholamhosseini A., Taghadosi V., Shiry N., Akhlaghi M., Sharifiyazdi H., Soltanian, S., Ahmadi N. (2018) First isolation and identification of Aeromonas veronii and Chryseobacterium joostei from reared sturgeons in Fars province, Iran. Veterinary Research Forum, vol. 9(2), pp. 113-119. doi: 10.30466/vrf.2018.30826.
24. Shane S.M, Gifford D.H. (1985) Prevalence and pathogenicity of Aeromonas hydrophila. Avian Dis, pp. 681-9.
25. Janda J. M., Guthertz L. S., Kokka R. P., Shimada T. (1994) Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin. Infect. Dis, vol. 19, pp. 77-83.
26. Janda J. M., Abbott S. L. (2010) The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clinical Microbiology Reviews, vol. 23(1), pp. 35–73. doi:10.1128/cmr.00039-09.
27. Bloch S., Monteil H. (1989) Purification and characterization of Aeromonas hydrophila beta-hemolysin. Toxicon, vol. 27(12), pp. 1279–1287. doi:10.1016/0041-0101(89)90059-7.
28. Davydov O. N., Isaeva N. M., Kurovskaya L. Ya. (2000) Ihtiolpatologicheskaya enciklopediya [Ichthyopathological encyclopedia]. Kiev, 164 p.
29. Gaevskaya A.V. (2006) Parazitologiya i patologiya ryb: enciklopedicheskij slovar' – spravochnik (izdanie vtoroe, dopolnennoe i pererabotannoe) [Parasitology and pathology of fish: encyclopedic dictionary-reference book (second edition, updated and revised)]. Sevastopol: ECOSI-Hydrophysics, 396 p.
30. Xu J., Zeng X., Jiang N., Zhou Y., Zeng L. (2015) Pseudomonas alcaligenes infection and mortality in cultured Chinese sturgeon, Acipenser sinensis. Aquaculture. doi: 10.1016/j.aquaculture.2015.04.014.
31. Noga E.J. (2010) Fish disease – diagnosis and treatment. 2nd Edn., New Jersey, Hoboken, Wiley-Blackwell, pp. 197-350.
32. Pekala-Safinska A. (2018) Contemporary threats of bacterial infections in freshwater fish. Journal of Veterinary Research, vol. 62(3), pp. 261–267. doi:10.2478/jvetres-2018-0037.
33. Borozdina I. B. (2010) Sravnitel'naya harakteristika bakterij roda pseudomonas pri kul'tivirovanii na iskusstvennyh pitatel'nyh sredah [Comparative characteristics of pseudomonas bacteria when cultured on artificial nutrient media]. Vestnik VSU, Series: Chemistry. Biology. Pharmacy, no. 2, pp. 67-71.
34. Lombardi G., Luzzaro F., Docquier J.-D., Riccio M. L., Perilli M., Coli A., Amicosante G., Rossolini G., Toniolo A. (2002) Nosocomial Infections Caused by Multidrug-Resistant Isolates of Pseudomonas putida Producing VIM-1 Metallo-beta-Lactamase. Journal of Clinical Microbiology, vol. 40(11), pp. 4051–4055. doi:10.1128/jcm.40.11.4051-4055.2002
35. Bouallègue O. (2004) Outbreak of Pseudomonas putida bacteraemia in a neonatal intensive care unit. Journal of Hospital Infection, vol. 57(1), pp. 88–91. doi:10.1016/j.jhin.2004.01.024.
36. Perz J. F., Craig A. S., Stratton C. W., Bodner S. J., Phillips W. E., Schaffner W. (2005) Pseudomonas putida Septicemia in a Special Care Nursery Due to Contaminated Flush Solutions Prepared in a Hospital Pharmacy. Journal of Clinical Microbiology, vol. 43(10), pp. 5316–5318. doi:10.1128/jcm.43.10.5316-5318.2005.
37. Allen D.A., Austin B., Colwell R.R. (1983) Numerical taxonomy of bacterial isolates associated with a freshwater fishery. Journal of General Microbiology, vol. 129, pp. 2043-2062.
38. Merril C. R., Scholl D., Adhya S. L. (2003) The prospect for bacteriophage therapy in Western medicine. Nature Reviews Drug Discovery, vol. 2(6), pp. 489–497. doi:10.1038/nrd1111.
39. Haitovich A. B., Vedmina E. A., Vlasova I. V. (1992) CHuvstvitel'nost' k antibiotikam Vibrionov i Aeromonad [Antibiotic sensitivity of Vibrions and Aeromonads]. Antibiotics and chemotherapy, vol. 37, no. 3, pp. 10 – 13.
40. Miroshnikov K. A., Chertkov O. V., Nazarov P. A., Mesyanjinov V. V. (2006) Peptidoglikanliziruyushchie fermenty bakteriofagov - perspektivnye protivobakterial'nye agenty [Peptidoglycanizing enzymes of bacteriophages-promising antibacterial agents]. Advances in biological chemistry, vol. 46, pp. 65-98.
41. Jones B. L., Wilcox M. H. (1995) Aeromonas infections and their treatment. Journal of Antimicrobial Chemotherapy, vol. 35(4), pp. 453–461. doi:10.1093/jac/35.4.453.
42. Kim S. E., Park S.-H., Park H. B., Park K.-H., Kim S.-H., Jung S.-I., Jang H.C., Kang S. J. (2012) Nosocomial Pseudomonas putida Bacteremia: High Rates of Carbapenem Resistance and Mortality. Chonnam Medical Journal, vol. 48(2), 91. doi:10.4068/cmj.2012.48.2.91.
43. Patil S, T. M. (2015) Antimicrobial Sensitivity Pattern of Pseudomonas fluorescens after Biofield Treatment. Journal of Infectious Diseases & Therapy, vol. 03(03). doi:10.4172/2332-0877.1000222.
44. Kittinger C., Lipp M., Baumert R., Folli B., Koraimann G., Toplitsch D., Liebmann A., Grisold A., Farnleitner A., Kirschner A., Zarfel G. (2016) Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.00586.
45. Doernberg S. B., Lodise T. P., Thaden J. T., Munita J. M., Cosgrove S. E., Arias C.A., Boucher H.W., Corey G.R., Lowy F.D., Murray B., Miller L.G. (2017) Gram-Positive Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clinical Infectious Diseases, 64 (suppl_1), pp. 24–29. doi:10.1093/cid/ciw828.
46. Running out antibiotics [Electronic resource] http://www9.who.int/mediacentre/news/ releases/2017/running-out-antibiotics/ru/, free. The title. from the screen.
47. Ackermann H. W. Frequency of morphological phage descriptions in the year 2000. Arch. Virol, vol. 146, pp. 843-857.
48. Barrow P. A., Soothill J. S. (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol, vol. 5, pp. 268–271.
49. Perros M. (2015) A sustainable model for antibiotics. Science, vol. 347, pp. 1062–1064. doi: 10.1126/science.aaa3048.
50. Nakai T., Sugimoto R., Park K.H., Matsuoka S., Mori K., Nishioka T., Maruyama K. (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis. Aquat. Organ, vol. 37, pp. 33–41.
51. Nakai T., Park S.C. (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol, vol. 153, pp. 13–18.
52. Defoirdt T., Sorgeloos P., Bossier P. (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol, vol. 14, pp. 251–258.
53. Oliveira J., Castilho F., Cunha A., Pereira M.J. (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquac. Int, vol. 20, pp. 879–910.
54. Richards G.P. (2014) Bacteriophage remediation of bacterial pathogens in aquaculture: A review of the technology. Bacteriophage, vol. 4 e975540.
55. Kalatzis P. G., Castillo D., Katharios P., Middelboe M. (2018) Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics (Basel, Switzerland), vol. 7(1), 15. https://doi.org/10.3390/antibiotics7010015.
56. Vinod M.G., Shivu M.M., Umesha K.R., Rajeeva B.C., Krohne G., Karunasagar I., Karunasagar I. (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture, vol. 255, pp. 117–124.
57. Oakey H.J., Owens L. (2000) A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia. J. Appl. Microbiol, vol. 89, pp. 702–709.
58. Karunasagar I., Shivu M.M., Girisha S.K., Krohne G., Karunasagar I. (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture, vol. 268, pp. 288–292.
59. Phumkhachorn P. Rattanachaikunsopon P. (2010) Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr. J. Microbiol, vol. 4, pp. 1794–1800.
60. Stalin N., Srinivasan P. (2017) Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet. Microbiol, vol. 207, pp. 83–96.
61. Wang Y., Barton M., Elliott L., Li X., Abraham S., Dea M.O., Munro J. (2017) Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture, vol. 473, pp. 251–258.
62. Crothers-Stomps C., Høj L., Bourne D.G., Hall M.R., Owens L. (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J. Appl. Microbiol, vol. 108, pp. 1744–1750.
63. Rong R., Lin H., Wang J., Khan M.N., Li M. (2014) Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration. Aquaculture, vol. 418–419, pp. 171–176.
64. Lomelí-Ortega C.O., Martínez-Díaz S.F. (2014) Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture, vol. 434, pp. 208–211.
65. Zhang J., Cao Z., Li Z., Wang L., Li H., Wu F., Jin L., Li X., Li S., Xu Y. (2015) Effect of bacteriophages on Vibrio alginolyticus infection in the sea cucumber, Apostichopus japonicus (Selenka). J. World Aquac. Soc, vol. 46, pp. 149–158.
66. Li Z., Li X., Zhang J., Wang X., Wang L., Cao Z., Xu Y. (2016) Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicas. Fish Shellfish Immunol, vol. 54, pp. 302–311.
67. Li Z., Zhang J., Li X., Wang X., Cao Z., Wang L., Xu Y. (2016) Efficiency of a bacteriophage in controlling Vibrio infection in the juvenile sea cucumber Apostichopus japonicas. Aquaculture, vol. 451, pp. 345–352.
68. Higuera G., Bastías R., Tsertsvadze G., Romero J., Espejo R.T. (2013) Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture, vol. 392–395, pp. 128–133.
69. Silva Y.J., Costa L., Pereira C., Mateus C., Cunha A., Calado R., Gomes N.C.M., Pardo M.A., Hernandez I., Almeida A. (2014) Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS ONE, vol. 9, e114197.
70. Cohen Y., Joseph Pollock F., Rosenberg E., Bourne D.G. (2013) Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen, vol. 2, pp. 64–74.
71. Ryan E.M., Gorman S.P., Donnelly R.F., Gilmore B.F. (2011) Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol, vol. 63, pp. 1253–1264.
72. Madsen L., Bertelsen S.K., Dalsgaard I., Middelboe M. (2013) Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: Implications for their use in phage therapy. Appl. Environ. Microbiol, vol. 79, pp. 4853–4861.
73. Christiansen R.H., Dalsgaard I., Middelboe M., Lauritsen A.H., Madsen L. (2014) Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: Implications for disease control in aquaculture. Appl. Environ. Microbiol, vol. 80, pp. 7683–7693.
74. Suttle C.A. (2005) Viruses in the sea. Nature, vol. 437, pp. 356–361.
75. Samson J.E., Magadán A.H., Sabri M., Moineau S. (2013) Revenge of the phages: Defeating bacterial defences. Nat. Rev. Microbiol, vol. 11, pp. 675–687.
76. Chan B.K., Abedon S.T., Loc-carrillo C. (2013) Phage cocktails and the future of phage therapy. Future Microbiol, pp. 769–783.
77. Mateus L., Costa L., Silva Y.J., Pereira C., Cunha A., Almeida A. 2014 () Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture, vol. 424–425, pp. 167–173.
78. Houte S. van, Buckling A., Westra E.R. (2016) Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev, vol. 80, pp. 745–763.
79. Westra E.R., Swarts D.C., Staals R.H.J., Jore M.M., Brouns S.J.J., van der Oost J. (2012) The CRISPRs, they are A-Changin’: How prokaryotes generate adaptive immunity. Annu. Rev. Genet, vol. 46, pp. 311–339.
80. Labrie S.J., Samson J.E., Moineau S. (2010) Bacteriophage resistance mechanisms. Nat. Rev. Microbiol, vol. 8, pp. 317–327.
81. Love M., Bhandari D., Dobson R., Billington C. (2018) Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. Antibiotics, vol. 7(1), 17. doi:10.3390/antibiotics7010017.
82. Rakhuba D.V., Kolomiets E.I., Szwajcer Dey E., Novik G.I. (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J. Microbiol, vol. 59, pp. 145–155.
83. Brussow H, Canchaya C, Hardt W. D. (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev, vol. 68 (3), pp. 560–602.
84. Davis B. M., Waldor M. K. (2003) Filamentous phages linked to virulence of Vibrio cholera. Curr. Opin. Microbiol, vol. 6, pp. 35–42. doi: 10.1016/S1369-5274(02)00005-X.
85. Jürgens U.J., Drews G., Weckesser J. (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol, vol. 154(1), pp. 471-8. PMID: 6131881; PMCID: PMC217481.
86. Wang I.-N., Smith D. L., Young R. (2000) Holins: The Protein Clocks of Bacteriophage Infections. Annual Review of Microbiology, vol. 54(1), pp. 799–825. doi:10.1146/annurev.micro.54.1.799.
87. Vollmer W., Holtje J.-V. (2004) The Architecture of the Murein (Peptidoglycan) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal Layer(s)? Journal of Bacteriology, vol. 186 (18), pp. 5978–5987. doi:10.1128/jb.186.18.5978-5987.2004.
88. Vollmer W., Blanot D., de Pedro, M.A. (2008) Peptidoglycan structure and architecture. FEMS Microbiol. Rev, vol. 32, pp. 149–167.
89. Beveridge T.J. (1999) Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. J. Bacteriol, vol. 181, no. 16, pp. 4725–4733.
90. Borysowski J., Weber-Dąbrowska B., Górski A. (2006) Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Experimental Biology and Medicine, vol. 231(4), pp. 366–377. doi:10.1177/153537020623100402.
91. Schmelcher M., Donovan D.M., Loessner M.J. (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol, vol. 7, pp. 1147-71; PMID: 23030422; http://dx.doi.org/10.2217/fmb.12.97.
92. Oliveira H., Melo L. D. R., Santos S. B., Nobrega F. L., Ferreira E. C., Cerca N., Azeredo J., Kluskens L. D. (2013) Molecular Aspects and Comparative Genomics of Bacteriophage Endolysins. Journal of Virology, vol. 87(8), pp. 4558–4570. doi:10.1128/jvi.03277-12.
93. Kretzer J.W., Lehmann R., Schmelcher M., Banz M., Kim K.P., Korn C., Loessner M.J. (2007) Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol, vol. 73, pp. 1992–2000.
94. The White House. National Action Plan for Combating Antibiotic-Resistant Bacteria. Interagency Task Force for Combating Antibiotic-Resistant Bacteria (2015) U.S. Office of the Press Secretary: Washington, DC, USA.
95. O'Flaherty S., Coffey A., Meaney W., Fitzgerald G.F., Ross R.P. (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J. Bacteriol, vol. 187, pp. 7161–7164.
96. Jun S.Y., Jung G.M., Son J.-S., Yoon S.J., Choi Y.-J. Kang S.H. (2011) Comparison of the antibacterial properties of phage endolysins SAL-1 and Lysk. Antimicrob. Agents Chemother, vol. 55, pp. 1764–1767.
97. Jun S.Y., Jung G.M., Yoon S.J., Choi Y.-J., Koh W.S., Moon K.S., Kang S.H. (2014) Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob. Agents Chemother, vol. 58, pp. 2084–2088.
98. Jun S.Y., Jung G.M., Yoon S.J., Youm S.Y., Han H.-Y., Lee J.-H., Kang S.H. (2016) Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin. Exp. Pharmacol. Physiol, vol. 43, pp. 1013–1016.
99. Oliveira H., São-José C., Azeredo J. (2018) Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses, vol. 10, no. 6, pp. 292.
100. Gaeng S., Scherer S., Neve H., Loessner M. J. (2000) Gene Cloning and Expression and Secretion of Listeria monocytogenes Bacteriophage-Lytic Enzymes in Lactococcus lactis. Applied and Environmental Microbiology, vol. 66 (7), pp. 2951–2958. doi:10.1128/aem.66.7.2951-2958.2000.
101. Zimmer M., Vukov N., Scherer S., Loessner, M. J. (2002) The Murein Hydrolase of the Bacteriophage 3626 Dual Lysis System Is Active against All Tested Clostridium perfringens Strains. Applied and Environmental Microbiology, vol. 68(11), pp. 5311–5317. doi:10.1128/aem.68.11.5311-5317.2002.
102. Celia L. K., Nelson D., Kerr D. E. (2008) Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Veterinary Microbiology, vol. 130 (1-2), pp. 107–117. doi:10.1016/j.vetmic.2007.12.004.
103. Obeso J. M, Martinez B., Rodriguez A., Garcia P. (2008) Lytic activity of the recombinant staphylococcal bacteriophage phiH5 endolysin active against Staphylococcus aureus in milk. Int. J. Food Microbiol, vol. 128(2), pp. 212–218.
104. Garcia P., Martinez B., Rodriguez L., Rodriguez A. (2010) Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int. J. Food Microbiol, vol. 141(3), pp. 151–155.
105. Hoopes J. T., Stark C. J., Kim H. A., Sussman D. J., Donovan D. M., Nelson D. C. (2009) Use of a Bacteriophage Lysin, PlyC, as an Enzyme Disinfectant against Streptococcus equi. Applied and Environmental Microbiology, vol. 75(5), pp. 1388–1394. doi:10.1128/aem.02195-08.
106. Wang Y., Sun J. H., Lu C. P. (2009) Purified Recombinant Phage Lysin LySMP: An Extensive Spectrum of Lytic Activity for Swine Streptococci. Current Microbiology, vol. 58(6), pp. 609–615. doi:10.1007/s00284-009-9379-x.
107. McGowan, S., Buckle, A. M., Mitchell, M. S., Hoopes, J. T., Gallagher, D. T., Heselpoth, R. D., Shenb Y., Reboula C. F., Lawa R. H. P., Fischettid V. A., Whisstock J. C., Nelson, D. C. (2012) X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proceedings of the National Academy of Sciences, vol. 109 (31), pp. 12752–12757. doi:10.1073/pnas.1208424109.

Загрузки

Как цитировать

Bissenbaev, A. K., & Bakiyev, S. S. (2020). Бактериальные заболевания – лимитирующий фактор развития аквакультуры осетровых рыб. Вестник КазНУ. Серия биологическая, 82(1), 4–21. https://doi.org/10.26577/eb.2020.v82.i1.01