INFLUENCE OF SINGLE AND COMBINED ABIOTIC STRESS ON CHANGES IN THE BIOSYNTHESIS OF ENZYMATIVE ANTIOXIDANTS IN CHENOPODIUM QUINOA L.

Authors

  • A.N. Zorbekova Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • N.V. Terletskaya Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • E.V. Shuyskaya Institute of Plant Physiology named after K.A. Timiryazev Russian Academy of Sciences, Russia, Moscow
  • N.K. Korbozova Institute of Genetics and Physiology, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/eb.2024.v98.i1.015

Keywords:

quinoa, enzymatic antioxidants, osmotic stress, salt stress, combined stress, eustress, distress

Abstract

Plants adapted to high insolation and dry conditions exhibit high enzyme activity (SOD). Activation of antioxidant enzymes such as superoxide dismutase (SOD) plays a key role in reducing oxidative stress in quinoa plants. In chloroplasts, where photosynthesis occurs, reactive oxygen species appear. The level of SOD activity increases with water and nutrient deficiency, indicating activation of chloroplast antioxidant defenses even before the appearance of visible signs of physiological stress. The transition from a normal state to a stressful one probably leads to a suppression of antioxidant processes, accompanied by a decrease in SOD activity. Ultimately, a set of secondary metabolites are formed in quinoa, capable of synthesizing various compounds with a wide spectrum of biological activity.

This abstract presents the results of studies of changes in the activity of enzymatic antioxidants such as superoxide dismutase and peroxidase in young Chenopodium quinoa L plants in response to osmotic, salt and combined stress. The findings demonstrate a link between the level of antioxidant defense in the Chenopodium quinoa L system and its ability to cope with various types of stress. Results obtained from the combined exposure of young quinoa plants to 200 mM NaCl + PEG indicate a transition from eustress to distress in young quinoa plants.

References

Lin M., Han P., Li, Y., Wang W., Lai D., Zhou L. Quinoa secondary metabolites and their biological activities or functions // Molecules. – 2019.- Vol. 24.- 2512p.

Тимохин А.К. Сравнительная анатомия вегетативных органов представителей семейства Amaranthaceae Juss// 1984-Москва.

Барабанов Е. И. Ботаника: учебник для студ. высш. учеб. заведений. — М.: Издательский центр «Академия».- 2006. — С. 247. — 448 с.

Wurtzel E.T., Kutchan T.M., Plant metabolism, the diverse chemistry set of the future //Science.- 2016, Vol. 353- 1232p.

Tasiu I., Stress and defense responses in plant secondary metabolites production // Biol. Res.- 2019, Vol. 52.

Hameed A., Gulzar S., Aziz I., Hussain T., Gul B., Khan M.A., Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte // AoB Plants.- 2015, Vol. 7: plv004.

Baral M., Datta A., Chakraborty S., Chakraborty P., Pharmacognostic studies on stem and leaves of Amaranthus spinosus Linn // Int. J. Appl. Biol. Pharm. Technol.-2011, Vol. 2, p. 41.

Dumanović J., Nepovimova E., Natić M., Kuča K., Jaćević V., The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview// Front. Plant Sci.- 2021, Vol. 11: 552969p.

Tsai T.-Y, Lin R.-J, Liu C., Tseng Y.-P, Chan, L.-P, Liang C.-H Djulis supplementation against oxidative stress and ultraviolet radiation-induced cell damage: The influence of antioxidant status and aging of skin in healthy subjects, J. Cosmet // Dermatol.- 2021, Vol. 21, 2945p.

Sharma Pallavi., Jha Ambuj Bhushan., Dubey Rama Shanker., Pessarakli, Mohammad. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions// Journal of Botany.- 2012, 1–26p.

Gins M.S, Gins V.K, Motyleva S.M, Kulikov I.M, Medvedev S.M, Pivovarov V.F, Mertvishcheva M.E, Metabolites with antioxidant and protective functions from leaves of vegetable amaranth (Amaranthus tricolor L), Sel’skokhozyaistvennaya biologiya //Agricultural Biology.- 2017.- Vol. 52, p. 1030.

Selmar D., Kleinwächter M., Abouzeid S., Yahyazadeh M., Nowak M., The impact of drought stress on the quality of spice and medicinal plants. In: Ghorbanpour M., Varma A // Medicinal Plants and Environmental Challenges, Springer.- 2017.- -Vol. 17, p.159.

Terletskaya N.V., Seitimova G.A., Kudrina N.O., Meduntseva N.D., Ashimuly K. The reactions of photosynthetic capacity and plant metabolites of Sedum hybridum L. in response to mild and moderate abiotic stresses// Plants. -2022.- Vol. 11, p.828.

He M., He C.Q., Ding N.Z. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance// Front. Plant Sci.- 2018. -Vol. 9, 1771p.

Bhargava A., Srivastava S. Response of Amaranthus sp. to salinity stress: a review, Emerging Research in Alternative Crops, Cham // Springer-Verlag.- 2020.- p. 245.

Derbali W., Manaa A., Goussi R., Derbali I., Abdelly C., Koyro H.-W. Post-stress restorative response of two quinoa genotypes differing in their salt resistance after salinity release// Plant Physiol. Biochem.- 2021.- Vol. 164, p. 222.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem.- 1976.- vol. 72, p. 248.

Shevyakova N.I., Stetsenko L.A., Meshcheryakov A.B., Kuznetsov Vl.V. The activity of the peroxidase system in the courseof stress-induced CAM development, Russ. J // Plant Physiol.- 2002.- vol. 49, p. 598.

Tovmasyan A., Maia C.G., Weitner T., Carballal S., Sampaio R.S., Lieb D., Ghazaryan R. Ivanovic-Burmazovic, I., Ferrer-Sueta, G., Radi, R., Reboucas, J.S., Spasojevic, I., Benov, L., Batinic-Haberle, I., A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics, Free Radic // Biol. Med.- 2015.- Vol. 86, p. 308.

Slimani N., Arraouadi S., Hajlaoui H., Borgi M.A., Boughattas N.E.H., De Feo V. Snoussi, M., The impact of greenhouse and field growth conditions on Chenopodium quinoa Willd accessions’ response to salt Stress: a comparative approach // Agronomy.- 2023.-Vol. 13, 2303p.

Gaweł S, Wardas M, Niedworok E, Wardas P. Dialdehyd malonowy (MDA) jako wskaźnik procesów peroksydacji lipidów w organizmie [Malondialdehyde (MDA) as a lipid peroxidation marker] //Wiad Lek.- 2004.- vol. 57, p. 453.

Soriano G., Kneeshaw S., Jimenez-Aleman G., Zamarre A.M., Franco-Zorrilla J.M., Rey-Stolle M.F., Barbas C., Garcıa-Mina J.M., Solano R. An evolutionarily ancient fatty acid desaturase is required for the synthesis of hexadecatrienoic acid, which is the main source of the bioactive jasmonate in Marchantia polymorpha // New Phytol.-2022.- Vol. 233, p.1401.

Terletskaya, N.V., Erbay, M., Zorbekova, A.N., Prokofieva, M.Yu., Saidova, L.T., Mamirova, A., Influence of osmotic, salt and combined stress on morphophysiological parameters of Chenopodium quinoa photosynthetic organs, Agriculture, 2023, vol. 13, p. 1.

Beauchamp C., Fridovich I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels // Anal. Biochem.- 1971.- Vol. 44, p. 276.

Hajihashemi S., Jahantigh O., Alboghobeish S. The redox status of salinity-stressed Chenopodium quinoa under salicylic acid and sodium nitroprusside treatments. Front // Plant Sci.-2022.-Vol. 13, 1030938p.

Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiol. Biochem.- 2010.- Vol. 48, p.909.

Yue Y., Su L., Hao M., Li W., Zeng L., Yan S. Evaluation of peroxidase in herbal medicines based on an electrochemical sensor // Front. Chem.- 2021.- vol. 9, 709487.

Downloads

Published

2024-03-20

Most read articles by the same author(s)