INVESTIGATION OF THE EFFECT OF MELATONIN ON HEMATOLOGICAL AND BIOCHEMICAL BLOOD PARAMETERS OF ANIMALS WITH TYPE 2 DIABETES

Authors

  • A.Y. Yessenbekova al-Farabi Kazakh National University, Kazakhstan, Almaty
  • N.T. Ablaikhanova al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.A. Duisenbek al-Farabi Kazakh National University, Kazakhstan, Almaty
  • А.А. Beissova al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Z.В. Yessimsiitova al-Farabi Kazakh National University, Kazakhstan, Almaty
  • А.М. Mukhitdinov al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.K. Toleubekova al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Z.M. Kenzhegaraeva al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Zh.S. Тileubayeva al-Farabi Kazakh National University, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/eb.2023.v94.i1.015

Abstract

This article describes the effect of melatonin on changes in hematological and biochemical parameters in an experimental group of animals with type 2 diabetes. This study expands our knowledge of the impact of metabolic disorders on circadian rhythms, metabolic control, and homeostasis, and uses the nocturnal pineal hormone melatonin as a potential therapeutic agent for the prevention and treatment of diabetes. Therefore, the purpose of this study was to study changes in hematological and biochemical parameters in animals with type 2 diabetes mellitus using streptozocin, as well as to study the effect of the hormone melatonin on the quantitative analysis of total protein and electrolytes, including changes in protein in blood serum. The possible protective effect of melatonin on changes caused by type 2 diabetes mellitus has been studied in the general blood profile. An assessment of blood glucose and serum sugar levels confirmed the induction. I-main group: 1 - control animals (CA), 2 - control group animals are receiving 5 mg/kg of melatonin (CA + MT (5 mg/ kg)), 3 - control group animals are receiving 10 mg/kg of melatonin (CA + MT (10 mg/kg)). The experimental group of rats received an intravenous injection of streptozocin 1 mg in 0.1 M citrate buffer (pH-7.4) for 7 days. The leading group II of 24 rats with streptozocin-induced type 2 diabetes was divided into subgroups and subjected to various therapeutic procedures. Thus, group 4 – animals with induced type 2 diabetes mellitus (DM2T) served as diabetic control, and group 5 – animals with induced type 2 diabetes mellitus receiving low-concentration melatonin (DM2T+MT (5 mg/kg)), group 6 - diabetes-induced animals receiving high-concentration melatonin (DM2T+MT (10 mg/kg)). Abnormal hematological and biochemical parameters were detected in rats with diabetes mellitus. However, it was found that the introduction of melatonin leads to positive changes in hematological and biochemical parameters.

References

Ablaikhanova N.T., Yessenbekova A.Y., Tazhiyeva Aigul, Yessimsiitova Z.B., Saidakhmetova A.K., Malibayeva A.E., Sanbaeva B.J. and Molsadykkyzy M. (2020) Issues of Type 2 Diabetes Disease Effective Treatment in Kazakhstan. Journal of Pharmacy and Nutrition Sciences, vol.10, pp.116.

Andersson A.K., Sandler S. (2001) Melatonin protects against streptozotocin, but not interleukin-1β-induced damage of rodent pancreatic β-cells. Journal of Pineal Research. vol. 30, no 3, pp. 157 – 165.

Bailey C.J., Atkins T.W., Matty A.J. (2000) Melatonin inhibition of insulin secretion in the rat and mouse. Horm Res. vol. 5(1), pp.21-8.

Bouatia-Naji N., Bonnefond A., Cavalcanti-Proença C., Sparsø T., Holmkvist J., Marchand M., Delplanque J., Lobbens S., Rocheleau G., Durand E., De Graeve F., Chèvre JC., Borch-Johnsen K., Hartikainen AL, Ruokonen A, Tichet J, Marre M, Weill J., Heude B, Tauber M, Lemaire K, Schuit F., Elliott P., Jørgensen T., Charpentier G., Hadjadj S., Cauchi S., Vaxillaire M., Sladek R., Visvikis-Siest S., Balkau B., Lévy-Marchal C., Pattou F., Meyre D., Blakemore AI., Jarvelin MR., Walley AJ., Hansen T., Dina C., Pedersen O., Froguel P. (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet, vol. 41, pp. 89–94.

Doaa A., Abdulwahab, Mohamed A., El-Missiry, Sameh Shabana, Azza I. Othman, Maggie E. Amer. (2021) Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rat. Heliyon 7. vol.5, pp.36.

Duisenbek A.A., Ablaikhanova N.T., Kaldykarayeva A.T., Yessenbekova A.E., Mukhitdin B., Yessimsiitova Z.B., Kozhamzharova L. (2022) 2 tipti qant diabeti bar nawqastarda éndotelialdı disfwnkciyamen baylanıstı tamırlı asqınwlar [Vascular complications in combination with endothelial dysfunction in people with type two diabetes]. Vestnik of the Karaganda University, Medicine Series. vol. 3(107), pp. 177.

Fareha Wajid, Raju Poolacherla, Fatiha Kabir Mim, Amna Bangash, Ian H. Rutkofsky. (2020) Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. Journal of Diabetes & Metabolic Disorders. vol. 19(2), pp. 1797-1825.

Ferreira D.S., Amaral F.G., Mesquita C.C., Barbosa A.P., Lellis–Santos C., Turati A.O., Santos L.R., Sollon C.S., Gomes P.R., Faria J.A., Cipolla-Neto J., Bordin S., Anhê G.F. (2012) Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. PLoS One, vol.7(6), pp. 215-216.

Hardeland R. (2012) Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Scientific World Journal. vol. 5, pp. 3-5.

Jia Xin Mok, Jack Hau Ooi, Khuen Yen Ng, Rhun Yian Koh, Soi Moi Chye. (2019) A new prospective on the role of melatonin in diabetes and its complications. Hormone Molecular Biology and Clinical Investigation. DOI: 10.1515/hmbci-2019-0036. vol. 2, pp. 179-182.

Lyssenko V., Nagorny C.L., Erdos M.R., Wierup N., Jonsson A., Spégel P., Bugliani M., Saxena R., Fex M., Pulizzi N., Isomaa B., Tuomi T., Nilsson P., Kuusisto J., Tuomilehto J., Boehnke M., Altshuler D., Sundler F., Eriksson J.G., Jackson A.U, Laakso M., Marchetti., Watanabe R.M., Mulder H., Groop L. (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. vol.41(1), pp. 2-8.

Mühlbauer E., Peschke E. (2007) Evidence for the expression of both the MT1- and in addition, the MT2-melatonin receptor, in the rat pancreas, islet and beta-cell. J Pineal Res.vol. 42(1), pp. 105.

Nagorny C.L., Sathanoori R., Voss U., Mulder H., Wierup N. (2011) Distribution of melatonin receptors in murine pancreatic islets. J Pineal Res. vol.50(4), pp. 412-7.

Nishida S., Sato R., Murai I., Nakagawa S. (2003) Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats. J Pineal Res, vol. 35(4), pp. 251–252.

Nogueira T.C., Lellis-Santos C., Jesus D.S., Taneda M., Rodrigues S.C., Amaral F.G., Lopes A.M., Cipolla-Neto J., Bordin S., Anhê G.F. (2011) Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology. vol. 152(4) pp.1253–63.

Peschke E., Hofmann K., Bähr I., Streck S., Albrecht E., Wedekind D., Mühlbauer E. (2011) The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus). Diabetologia. vol.54, no 7 pp. 1831.

Peschke E., Wolgast S., Bazwinsky I., PГnicke K., Muhlbauer E. (2008) Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes. J Pineal Res, vol. 45(4): pp. 439–48.

Picinato M.C., Haber E.P., Carpinelli A.R., Cipolla-Neto J. (2002) Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J Pineal Res, vol. 33(3), pp. 172–177.

Prokopenko I., Langenberg C., Florez J.C., Saxena R., Soranzo N., Thorleifsson G., Loos R.J., Manning A.K., Jackson A.U., Aulchenko Y., Potter S.C., Erdos M.R. (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet, vol. 41, pp. 77–81.

Ramracheya R.D., Muller D.S., Squires P.E., Brereton H., Sugden D., Huang G.C., Amiel SA, Jones PM, Persaud SJ. (2008) Function and expression of melatonin receptors on human pancreatic islets. J Pineal Res. vol. 44(3). pp. 273.

Reiling E., Riet E., Groenewoud M.J., Welschen L.M., van Hove E.C., Nijpels G., Maassen J.A., Dekker J.M., Hart L.M. (2009) Combined effects of single-nucleotide polymorphisms in GCK, GCKR, G6PC2 and MTNR1B on fasting plasma glucose and type 2 diabetes risk. Diabetologia. vol. 52(9), pp. 66–70.

Scheer F.A., Hilton M.F., Mantzoros C.S., Shea S.A. (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. vol. 106(11), pp.3-8.

Simonneaux V, Ribelayga C. (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. vol. 55, no 2, pp. 325-95.

Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. vol. 351(2), рр.152-66.

Stebelová, Katarína, Herichová, Iveta, Zeman, Michal. (2002) Diabetes induces changes in melatonin concentrations in peripheral tissues of rat. Neuroendocrinology Letters vol. 28, no 2, pp.159 – 165

Yapislar, H., Haciosmanoglu, E., Sarioglu, T., Degirmencioglu S., Sogut I., Poteser M., Ekmekcioglu C. (2022) AntiInflammatory Effects of Melatonin in Rats with Induced Type 2 Diabetes Mellitus. Life. vol. 12, pp.574.

Downloads

Published

2023-03-20

Issue

Section

HUMAN and ANIMAL PHYSIOLOGY