AMPLIFICATION AND HIGHER EXPRESSION OF THE ZNF281 GENE IN PANCREATIC CANCER CORRELATES WITH POOR PROGNOSIS
DOI:
https://doi.org/10.26577/eb.2022.v93.i4.08Keywords:
Polycomb, ZNF281, oncology, pancreatic cancerAbstract
Establishing precise gene expression patterns in different cell types is essential for the proper differentiation and development of multicellular organisms. The resulting level of transcription is determined both by the genetic nucleotide sequence of DNA and by epigenetic factors that modify chromatin. Epigenetic repressors of the Polycomb group (PcG) are regulatory proteins that repress gene transcription and maintain correct pattern of gene expression in multicellular organisms. PcG proteins form two main complexes: Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2) that possess ubiquitin ligase and histone methyltransferase enzymatic activities, respectively. Several mechanisms have been suggested to account for the recruitment of Polycomb proteins in mammals, one of which involves interactions with specific DNA-binding factors. While deregulation main PcG genes in cancer have been well documented, the role of PcG DNA-binding partners in oncology remains elusive.
In the present study, we analyzed genomic and transcriptomic databases of clinical tumor samples (cBioPortal, TNMplot, KMplot) to evaluate clinical correlations of Polycomb-associated DNA-binding proteins. We found that amplifications and higher expression of the ZNF281 gene are often found in pancreatic cancer and correlate with poor prognosis of overall survival.
References
Kuroda MI, Kang H, De S, Kassis JA. Dynamic Competition of Polycomb and Trithorax in Transcriptional Programming. Annu Rev Biochem. 2020. 89:235-253. doi: 10.1146/annurev-biochem-120219-103641.
Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell. 2017. 171(1):34-57. doi: 10.1016/j.cell.2017.08.002.
Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013. 20(10):1147-55. doi: 10.1038/nsmb.2669.
Chetverina D.A., Lomaev D.V., Georgiev P.G., Erokhin M.M. Genetic Impairments of PRC2 Activity in Oncology: Problems and Prospects. Russian Journal of Genetics. 2021. 57(3), 258-272.
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res. 2022. 32(3):231-253. doi: 10.1038/s41422-021-00606-6.
Erokhin M, Chetverina O, Győrffy B, Tatarskiy VV, Mogila V, Shtil AA, Roninson IB, Moreaux J, Georgiev P, Cavalli G, Chetverina D. Clinical Correlations of Polycomb Repressive Complex 2 in Different Tumor Types. Cancers (Basel). 2021. 13(13):3155. doi: 10.3390/cancers13133155.
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae. 2020. 12(4):66-85. doi: 10.32607/actanaturae.11090.
Straining R, Eighmy W. Tazemetostat: EZH2 Inhibitor. J Adv Pract Oncol. 2022 13(2):158-163. doi: 10.6004/jadpro. 2022. 13.2.7.
Hoy SM. Tazemetostat: First Approval. Drugs. 2020 80(5):513-521. doi: 10.1007/s40265-020-01288-x.
Kassis JA, Brown JL. Polycomb group response elements in Drosophila and vertebrates. Adv Genet. 2013. 81:83-118. doi: 10.1016/B978-0-12-407677-8.00003-8.
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. [Control of the gene activity by polycomb and trithorax group proteins in Drosophila]. Genetika. 2017. 53(2):133-54. Russian.
Erokhin M, Georgiev P, Chetverina D. Drosophila DNA-Binding Proteins in Polycomb Repression. Epigenomes. 2018. 2(1):1. doi: 10.3390/epigenomes2010001.
Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021. 30(1):187-200. doi: 10.1002/pro.3978.
Bartha Á, Győrffy B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int J Mol Sci. 2021. 22(5):2622. doi: 10.3390/ijms22052622.
Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021. 11(1):6047. doi: 10.1038/s41598-021-84787-5.
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012. 2(5):401-4. doi: 10.1158/2159-8290.CD-12-0095.
Fedotova AA, Bonchuk AN, Mogila VA, Georgiev PG. C2H2 Zinc Finger Proteins: The Largest but Poorly Explored Family of Higher Eukaryotic Transcription Factors. Acta Naturae. 2017. 9(2):47-58.
Itoh Y, Takada Y, Yamashita Y, Suzuki T. Recent progress on small molecules targeting epigenetic complexes. Curr Opin Chem Biol. 2022. 67:102130. doi: 10.1016/j.cbpa.2022.102130.
Eich ML, Athar M, Ferguson JE 3rd, Varambally S. EZH2-Targeted Therapies in Cancer: Hype or a Reality. Cancer Res. 2020. 80(24):5449-5458. doi: 10.1158/0008-5472.CAN-20-2147.
Wassef M, Rodilla V, Teissandier A, Zeitouni B, Gruel N, Sadacca B, Irondelle M, Charruel M, Ducos B, Michaud A, et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 2015. 29(24):2547-62. doi: 10.1101/gad.269522.115.
Veneti Z, Gkouskou KK, Eliopoulos AG. Polycomb Repressor Complex 2 in Genomic Instability and Cancer. Int J Mol Sci. 2017. 18(8):1657. doi: 10.3390/ijms18081657.
Kim J. Cell Dissemination in Pancreatic Cancer. Cells. 2022. 11(22):3683. doi: 10.3390/cells11223683.
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016. 22(44):9694-9705. doi: 10.3748/wjg.v22.i44.9694.
Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016. 388(10039):73-85. doi: 10.1016/S0140-6736(16)00141-0.