IN SILICO IDENTIFICATION OF EQQUS CABALLUS MIRNAS WITH THE POTENTIAL TO AFFECT HUMAN GENE EXPRESSION

Authors

  • M.O. Myrzabekova Kazakh National Agrarian University, Kazakhstan, Almaty
  • S.B. Labeit University of Heidelberg, Germany, Heidelberg
  • R.Ye. Nyiazova University of Heidelberg, Germany, Heidelberg

DOI:

https://doi.org/10.26577/eb.2022.v90.i1.06
        83 64

Keywords:

miRNA, mRNA, milk, xeno-miRNA, eca

Abstract

miRNAs exist that are codified by non-human genomes but are still present in circulation.These miRNAs have been termed as xeno-miRNAs. XenomiRNAs in humans have been identified in various exogenous sources previously.The aim of this work is to identify xeno-miRNA from Eqqus caballus (domestic horse or in brief eca) which have analogs can bind to human genes. The MirTarget program was used to predict miRNA binding to human gene mRNAs.The homologs of eca-miRs were identified by using miRviewer online free available bioinformatic tool. It was identified 15 eca-miRNAs interacted with human mRNA genes with high complementarity, ∆G/∆Gm equal to 98-100%. The characteristics of the interaction of all known eca-miRNAs with mRNAs of human genes were identified. The total number of binding sites for 469 miRNAs are 1605, from which 907 are in CDS, 451 in 3’UTR and 247 in 5’UTR. 93 miRNAs each have one-target genes, 63 miRNAs have two target genes, 67 miRNAs have three to four target genes, and 72 miRNAs have five and more target genes. The free energy of the interaction of the considered miRNAs with the mRNAs of human genes is high and varied from -110 kj/mole to -117 kj/mole. The homology analyses revealed 140 miRNAs candidates shown to be total identical to human miRNAs sequences.

 

References

Andreas N.J., Kampmann B., Mehring Le-Doare K. (2015) Human breast milk: A review on its composition and bioactiv- ity. Early Human Development, vol. 91, no.11, pp. 629–635.

Alsaweed M. Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F. (2016) Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes. Intern. J. Molec. Sci., vol.17, no. 956. doi: 10.3390/ ijms17060956

Ambros V. (2004) The functions of animal microRNAs. Nature, vol. 431, no. 7006, pp. 350–355.

Bartel D.P. (2009) MicroRNAs: Target recognition and regulatory functions, Cell, vol. 136, no. 2, pp. 215–233.

Benmoussa A., Lee C. H., Laffont B., Savard P., Laugier J., Boilard E., Provost P. (2016) Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions, Journal of Nutrition, vol. 146, no. 11, pp. 2206–2215.

Bissels U., Bosio A., Wagner W. (2012) MicroRNAs are shaping the hematopoietic landscape. Haematologica, vol. 97, no. 2, pp. 160–167.

Bari A., Orazova S., Ivashchenko A. (2013) miR156- and miR171-binding sites in the protein coding sequences of several plant genes. Biomed Res. Int., vol. 1, no. 7. doi: 10.1155/2013/307145.

Bari A., Sagaidak I., Pinskii I., Orazova S., Ivashchenko A. (2014) Binding of miR396 to mRNA of genes encoding growth regulating transcription factors of plants. Russ. J. Plant Physiol., vol. 61, pp. 807–810. doi:10.1134/S1021443714050033

Baier S.R., Nguyen C., Xie F., Wood J.R., Zempleni J. (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK293 kidney cell cultures, and mouse livers. J. Nutr., vol.144, pp. 1495–500. doi: 10.3945/jn.114.196436

Cui J., Zhou B., Ross S.A., Zempleni J. (2017). Nutrition, microRNAs, and Human Health. Adv. Nutr., vol. 8, pp.105–112. doi: 10.3945/an.116.013839.

Chen X., Gao C., Li H., Huang L., Sun Q., Dong Y. (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. vol. 20, pp. 1128–37. doi: 10.1038/ cr.2010.80

Dai X., Zhuang Z., Zhao P. (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief. Bioinformatics vol.12, pp.115-121.doi1093/bb/bbq065

Davis E., Caiment F., Tordoir X., Cavaillé J., Ferguson-Smith A., Cockett N. (2005). RNAi-mediated allelic trans-interac- tion at the imprinted Rtl1/Peg11 locus. Curr. Biol., vol.15, pp. 743–749. doi: 10.1016/j.cub.2005.02.060

Elyakim E., Sitbon E., Faerman A., Tabak S., Montia E., Belanis L. (2010) has-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res. vol.70, pp.8077–87. doi: 10.1158/0008-5472.CAN-10-1313

Feng Y., Li N., Ma H., Bei B., Han Y., Chen G. (2018). Undescribed phenylethyl flavones isolated from patrinia villosa show cytoprotective properties via the modulation of the mir-144-3p/nrf2 pathway. Phytochemistry, vol. 153, pp. 28–35.

Fromm B., Tosar J.P., Lu Y., Halushka M.K., Witwer K.W. (2018) Human and cow have identical miR-21–5p and miR- 30a-5p sequences, which are likely unsuited to study dietary uptake from cow milk. J. Nutr. vol. 148, pp. 1506–7. doi: 10.1093/jn/ nxy144.

Friedman R.A., Honig B. (1995) A free energy analysis of nucleic acid base stacking in aqueous solution. Biophys. J. vol. 69, no.4, pp. 1528–1535. doi:10.1016/S0006-3495(95)80023-8.

Garg A., Heinemann U. (2018) A novel form of RNA double helix based on G•U and C•A+ wobble base pairing. RNA. vol. 24, pp.209–218. doi: 10.1261/rna.064048.117

Gaziel-Sovran A., Segura M.F., Di Micco R., Collins M.K., Hanniford D., VegaSaenz De Miera E. (2011) miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 20:104–18. doi: 10.1016/j.ccr.2011.05.027 43.

Haneklaus M., Gerlic M., O’neill L.A., Masters S.L. miR-223: infection, inflammation and cancer. J. Intern. Med. (2013) 274:215–26. doi: 10.1111/joim.12099

Stittrich A.B., Haftmann C, Sgouroudis E, Kuhl A.A., Hegazy A.N., Panse I. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. (2010) Nat. Immunol. vol.11, pp.1057–62. doi: 10.1038/ni.1945

Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. (2014) MiR-3960 binding sites with mRNA of hu- man genes. Bioinformation. vol. 10, pp.423–427. doi: 10.6026/97320630010423.

Ivashchenko A.T., Pyrkova A.Y., Niyazova R.Y., Alybayeva A., Baskakov K. (2016). Prediction of miRNA binding sites in mRNA. Bioinformation 12, pp.237–240.

Izumi H., Tsuda M., Sato Y., Kosaka N., Ochiya T., Iwamoto H., Takeda Y. (2015) Bovine milk exosomes contain mi- croRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, vol. 98, no. 5, pp. 2920–2933.

Jennewein C., Von Knethen A., Schmid T., Brune B. (2010) MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma. (PPARgamma) mRNA destabilization. J. Biol. Chem. vol.285, pp.11846–53. doi: 10.1074/jbc.M109.066399.

Johnnidis J.B., Harris M.H., Wheeler R.T., Stehling-Sun S., Lam M.H., Kirak O. (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. vol.451:pp. 1125–9. doi: 10.1038/nature06607

Kosaka N., Izumi H., Sekine K., Ochiya T. (2010) MicroRNA as a new immune-regulatory agent in breast milk. Silence. vol.1, no.7, doi: 10.1186/1758-907X-1-7.

Kool E.T. (2001) Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. vol.30, pp.1–22. doi: 10.1146/annurev.biophys.30.1.1

Kiezun A., Artzi S., Modai S., Volk N., Isakov O., Shomron N. (2012) miRviewer: a multispecies microRNA homologous viewer. BMC Res Notes., vol.5, pp.92–97.

Lujambio A., Calin G.A., Villanueva A., Ropero S., Sanchez-Cespedes M., Blanco D. (2008) A microRNA DNA methyla- tion signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA. vol.105, no.13556–61. doi: 10.1073/pnas.0803055105

Li Z., Xu R., Li N. (2018) MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr. Metab. vol.15, no.68. doi: 10.1186/s12986-018-0311-x.

Leontis N.B., Stombaugh J., Westhof E. (2002) The non-Watson-Crick base pairs and their 641 associated isostericity matrices.Nucleic Acids Res. vol.30, pp.3497–3531. doi: 10.1093/nar/gkf481.

Meister G. (2013) Argonaute proteins: Functional insights and emerging roles. Nature Reviews Genetics, vol.14, no.7, pp. 447–459.

Meza-Sosa K.F., Pedraza-Alva G., Perez-Martinez L. (2014) MicroRNAs: Key triggers of neuronal cell fate. Frontiers in Cellular Neuroscience, vol. 8, no.175.

Melnik B.C. (2015a) Milk: An epigenetic amplifier of FTO-mediated transcription? Implications for western diseases. Journal of Translational Medicine, vol.13, no. 385.

Melnik B.C., Kakulas F., Geddes D.T., Hartmann P.E., John S.M., Carrera-Bastos P., Schmitz G. (2016) Milk miRNAs: Simple nutrients or systemic functional regulators? Nutrition & Metabolism (London), vol.13, no. 42

Melnik B.C., John S.M., Carrera-Bastos P., Schmitz G. (2016a) Milk: A postnatal imprinting system stabilizing FOXP3 expression and regulatory T cell differentiation. Clinical and Translational Allergy, vol. 6, no.18. https://doi. org/10.1186/s13601- 016-0108-9

Melnik B.C. (2017) Milk disrupts p53 and DNMT1, the guardians of the genome: Implications for acne vulgaris and pros- tate cancer. Nutrition & Metabolism (London), vol.14, no. 55.

Melnik B.C., Schmitz G. (2017a) MicroRNAs: Milk’s epigenetic regulators. Best Practice & Research: Clinical Endocri- nology & Metabolism, vol.31, no.4, pp. 427–442.

Mysore R., Zhou Y., Sadevirta S., Savolainen-Peltonen H., Nidhina Haridas P. A., Soronen J., Olkkonen V. M. (2016). MicroRNA-192 impairs adipocyte triglyceride storage. Biochimica et Biophysica Acta, vol. 1861, no.4, pp. 342–351

Nahid M.A., Pauley K.M., Satoh M., Chan E.K. (2009) miR-146a is critical for endotoxininduced tolerance: implication in innate immunity. J. Biol. Chem. vol. 284, pp. 34590–9. doi: 10.1074/jbc.M109.056317

O’Connell R. M., Rao D.S., Chaudhuri A. A., Baltimore D. (2010) Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, vol.10, no.2, pp. 111–122

O’hara A.J., Vahrson W., Dittmer D.P. (2008) Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma. Blood. vol. 111, pp. 2347–53. doi: 10.1182/blood-2007-08-104463 49.

Provost P., Dishart D., Doucet J., Frendewey D., Samuelsson B., Radmark O. (2002) Ribonuclease activity and RNA bind- ing of recombinant human dicer. The EMBO Journal, vol. 21, no.21, pp. 5864–5874.

Perri M., Lucente M., Cannataro R., De Luca I.F., Gallelli L., Moro G. (2018) Variation in immune- related microRNAs profile in human milk amongst lactating women. Microrna. vol.7, pp.107 – 14. doi: 10.2174/2211536607666180206150503

Shu J., Chiang K., Zempleni J., Cui J. (2015) Computational characterization of exogenous microRNAs that can be trans- ferred into human circulation. PLoS One. vol.10

Stittrich A.B., Haftmann C., Sgouroudis E., Kuhl A. A., Hegazy A. N., Panse I. (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat. Immunol. vol.11, pp.1057– 62. doi: 10.1038/ni.1945

Sheedy F.J., Palsson-Mcdermott E., Hennessy E.J., Martin C., O’leary J.J., Ruan Q. (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol, vol.11, pp.141–7. doi: 10.1038/ni.1828

Takagi S., Nakajima M., Mohri T., Yokoi T. (2008) Post-transcriptional regulation of human pregnane X receptor by micro- RNA affects the expression of cytochrome P450 3A4. J. Biol. Chem. vol. 283, doi: 10.1074/jbc.M709382200

Van Herwijnen M.J.C, Driedonks T.A.P., Snoek B.L., Kroon A.M.T., Kleinjan M. (2018) Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals. Front Nutr, vol.5, no.81. doi: 10.3389/fnut.2018.00081

Wang J., Li Z., Liu B., Chen G., Shao N., Ying X. (2016a) Systematic study of cis696 antisense miRNAs in animal species reveals miR-3661 to target PPP2CA in human cells. RNA vol.22, pp.87–95. doi: 10.1261/rna.052894.115.

Wang Y., Li L., Tang Sh., Liu J., Zhang H., Zhi H. (2016b). Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.BMC Genomics 17:57. doi: 10.1186/ s12863-016-0364-7

Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Wang K. (2010) The microRNA spectrum in 12 body fluids. Clinical Chemistry, vol. 56, no. 11, pp. 1733–1741.

West S. (1999) Introducing the Scythians: Herodotus on koumiss. Museum Helveticim.vol.56, pp.76-86.

Xi Y., Formentini A., Chien M., Weir D. B., Russo J.J., Ju J. (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights, vol. 2, pp.113–21. doi: 10.1177/117727190600100009 48.

Yurikova O.Y., Aisina D.E., Niyazova R.E., Atambayeva S.A., Labeit S., Ivashchenko A.T. (2019) The interac- tions of miRNA-5p and miRNA-3p with the mRNAs of Ortolologous Genes Mol. Biol. vol.53, no.4, pp. 692-704. doi: 10.1134/ S0026898419040189

Zempleni J., Kusuma R. J., Manca S., Friemel T., Sukreet S., Nguyen C. (2016) Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. American Journal of Physiology-Cell Physiology, vol.310, no.10, pp.800–807.

Zempleni J., Aguilar-Lozano A., Sadri M., Sukreet S., Manca S., Wu D., Mutai E. (2017) Biological activities of extracel- lular vesicles and their cargos from bovine and human milk in humans and implications for infants. Journal of Nutrition, vol.147, no.1, pp. 3–10.

Zempleni J., Baier S.R., Howard K. M., Cui J. (2015b) Gene regulation by dietary microRNAs. Canadian Journal of Physi- ology and Pharmacology, vol. 93, no.12, pp.1097–1102.

Downloads

How to Cite

Myrzabekova, M., Labeit, S., & Nyiazova, R. (2022). IN SILICO IDENTIFICATION OF EQQUS CABALLUS MIRNAS WITH THE POTENTIAL TO AFFECT HUMAN GENE EXPRESSION. Experimental Biology, 90(1), 60–72. https://doi.org/10.26577/eb.2022.v90.i1.06