ISOLATION AND CHARACTERIZATION OF BACTERIOPHAGES LYSING CLINICAL STRAINS OF E. COLI
DOI:
https://doi.org/10.26577/eb.2022.v90.i1.09Keywords:
Bacteriophage, Escherichia coli, Nosocomial infection, Antibiotic resistance, Lytic activityAbstract
Nosocomial infections are an important problem in modern healthcare. According to the WHO, annually, about ten million hospitalized patients die or become disabled due to nosocomial infections. One of the main causative agents of nosocomial infections are pathogenic strains of E. coli, which pose a danger to immunocompromised patients. In addition, a large number of E. coli strains have developed resistance to almost all known classes of antibiotics, which dramatically reduces the effectiveness of antibiotic therapy in the fight against such pathogens. Under these conditions, research on development of alternative approaches to combatting bacterial infections is becoming increasingly important. The most relevant and promising method is phage therapy.
The purpose of these studies was to isolate bacteriophages from environmental objects capable of lysing clinical strains of E. coli, and to study their biological properties.
As a result of the conducted studies, it was found that environmental objects located in sanitary-unfavorable areas are the most preferable objects for the isolation of E. coli lytic bacteriophages. Six bacteriophages able to lyse the clinical strain of E. coli were isolated from samples collected in similar areas. The isolated bacteriophages were strictly species-specific and possessed maximum lytic activity at concentrations of 105 viral particles per ml or more, which is the standard for commercial phage preparations. The investigated phages showed their high antibacterial activity sufficient to effectively combat against pathogenic of E. coli strains.
References
Breitwieser F.P., Lu J., Salzberg S.L. (2017) A review of methods and databases for metagenomic classification and assembly. Briefings in Bioinformatics., vol. 20., pp. 1125-1136. doi: 10.1093/bib/bbx120.
Berenstein D. (1986) Prophage induction by ultraviolet light in Acinetobacter calcoaceticus. J. Gen. Microbiol., vol. 132, no 9, pp. 2633-2636. doi: 10.1099/00221287-132-9-2633. PMID: 3794658.
Burrowes B.H., Molineux I.J., Fralick, J.A. (2019) Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses, vol. 11, pp. 241. doi: 10.3390/v11030241
Chang R., Wallin M., Lin Y., Leung S., Wang H., Morales S., Chan H. K. (2018) Phage therapy for respiratory infections. Advanced drug delivery reviews, vol. 133, pp. 76–86. doi: 10.1016/j.addr.2018.08.001.
Chanishvili N. (2012) Phage therapy-history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res., vol. 83, pp. 3-40. doi: 10.1016/B978-0-12-394438-2.00001-3.
Chhibber S., Kaur P., Gondil V.S. (2018) Simple drop cast method for enumeration of bacteriophages. J. Virol. Methods, vol. 262, pp. 1-5. doi: 10.1016/j.jviromet.2018.09.001.
Coque T.M., Baquero F., Canton R. (2008) Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill., vol. 13, no47, pii. 19044.
Cross T., Schoff C., Chudoff D., Graves L., Broomell H., Terry K., Farina J., Correa A., Shade D., Dunbar D. (2015) An optimized enrichment technique for the isolation of Arthrobacter bacteriophage species from soil sample isolates. J. Vis. Exp. vol 9, no 98, e52781. doi: 10.3791/52781.
Croxen M.A., Finlay B.B. (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol., vol. 8, no 1, pp. 26‐38. doi: 10.1038/nrmicro2265
Dedrick R.M., Guerrero-Bustamante C.A., Garlena R.A., Russell D.A., Ford K., Harris K., Gilmour K.C., Soothill J., Jacobs-Sera D., Schooley R.T., Hatfull G.F., Spencer H. (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med., vol. 25, no 5, pp. 730‐733. doi: 10.1038/s41591-019-0437-z.
Divatia J.V., Pulinilkunnathil J.G., Myatra S.N. (2019) Nosocomial Infections and Ventilator-Associated Pneumonia in Cancer Patients. Oncologic Critical Care, vol. 9, pp. 1419–39. doi: 10.1007/978-3-319-74588-6_125.
Gordillo Altamirano F. L., Barr, J. J. (2019) Phage Therapy in the Postantibiotic Era. Clinical microbiology reviews, vol. 32, no 2, e00066-18. doi: /10.1128/CMR.00066-18.
Gupta K., Scholes D., Stamm W.E. (1999) Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA, vol. 281, pp. 736–738. doi: 10.1001/jama.281.8.736.
Kropinski A.M., Mazzocco A., Waddell T.E., Lingohr E., Johnson R.P. (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol., vol. 501, pp. 69 – 76. doi: 10.1007/978-1-60327-164-6_7.
Madden G.R., Weinstein R.A., Sifri C.D. (2018) Diagnostic Stewardship for Healthcare-Associated Infections: Opportunities and Challenges to Safely Reduce Test Use. Infect. Control. Hosp. Epidemiol., vol. 39, no. 2, pp. 214-218. doi: 10.1017/ ice.2017.278.
Meyer F., Paarmann D., D'Souza M., Olson R., Glass E.M., Kubal M., Paczian T., Rodriguez A., Stevens R., Wilke A., Wilkening J., Edwards R.A. (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, vol. 9, pp. 386. doi: 10.1186/1471-2105-9-386.
Mokszycki M.E., Leatham-Jensen M., Steffensen J.L., Zhang Y., Krogfelt K.A., Caldwell M.E., Conway T., Cohen P.S. (2018) A Simple In Vitro Gut Model for Studying the Interaction between Escherichia coli and the Intestinal Commensal Microbiota in Cecal Mucus. Appl. Environ Microbiol., vol. 84, no. 24, e02166-18. doi: 10.1128/AEM.02166-18.
Nicolas-Chanoine M. H., Bertrand X., Madec, J. Y. (2014) Escherichia coli ST131, an intriguing clonal group. Clinical microbiology reviews, vol. 27, no 3, pp. 543–574. doi: 10.1128/CMR.00125-13.
Radpour R., Sikora M., Grussenmeyer T., Kohler C., Barekati Z., Holzgreve W., Lefkovits I., Zhong X.Y. (2009) Simultaneous isolation of DNA, RNA, and proteins for genetic, epigenetic, transcriptomic, and proteomic analysis. J. Proteome. Res., vol. 8, no.11. pp. 5264 – 5274. doi: 10.1021/pr900591w.
Russo T.A., Johnson J.R. (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: an overlook epidemic. Microbes Infect., vol. 5, pp. 449–456. doi: 10.1016/S1286-4579(03)00049-2.
Salmond G.P., Fineran P.C. (2015) A century of the phage: Past, present and future. Nat. Rev. Microbiol., vol. 13, pp. 777–786. doi: 10.1038/nrmicro3564.
Tan C.W., Rukayadi Y., Hasan H., Abdul-Mutalib N.A., Jambari N.N., Hara H., Thung T.Y., Lee E., Radu S. (2021) Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages From Seafood Samples. Front. Microbiol., vol. 10, e616548. doi: 10.3389/fmicb.2021.616548.
Tucker T., Marra M., Friedman, J. M. (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet., vol. 85, no. 2, pp. 142–154. doi: 10.1016/j.ajhg.2009.06.022.
Van Twest R, Kropinski A.M. (2009) Bacteriophage enrichment from water and soil. Methods Mol. Biol., vol. 501, pp. 15-21. doi: 10.1007/978-1-60327-164-6_2.
World Health Organization. Antimicrobial resistance: global report on surveillance. Volume XXII. – Geneva: WHO, 2014.
– 232 p. https://apps.who.int/iris/handle/10665/112642.
World Health Organization. World health statistics 2018: monitoring health for the SDGs, sustainable development goals.
– Geneva: WHO, 2018. – 86 p. https://www.who.int/docs/default-source/gho-documents/world-health-statistic-reports/6-june- 18108-world-health-statistics-2018.pdf
Zaczek-Moczydłowska M.A., Young G.K., Trudgett J., Plahe C., Fleming C.C., Campbell K., O' Hanlon R. (2020) Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One, vol. 15, no. 4, e0230842. doi: 10.1371/journal.pone.0230842.
Zhvania P., Hoyle N. S., Nadareishvili L., Nizharadze D., Kutateladze M. (2017) Phage Therapy in a 16-Year-Old Boy with Netherton Syndrome. Frontiers in medicine, vol. 4, pp. 94. doi: 10.3389/fmed.2017.00094.