Obtaining protein preparations of the first subunit of hemagglutinin influenza virus

Authors

  • A. U. Issabek Тhe Research Institute for Biological Safety Problems, Republic of Kazakhstan, Gvardeyskiy, Zhambyl dist.
  • S. O. Sadikalieva Тhe Research Institute for Biological Safety Problems, Republic of Kazakhstan, Gvardeyskiy, Zhambyl dist.
  • E. D. Burashev Тhe Research Institute for Biological Safety Problems, Republic of Kazakhstan, Gvardeyskiy, Zhambyl dist.
  • O. V. Chervyakova Тhe Research Institute for Biological Safety Problems, Republic of Kazakhstan, Gvardeyskiy, Zhambyl dist.
  • M. M. Kassenov Тhe Research Institute for Biological Safety Problems, Republic of Kazakhstan, Gvardeyskiy, Zhambyl dist.
  • K. T.` Sultankulova Тhe Research Institute for Biological Safety Problems, Republic of Kazakhstan, Gvardeyskiy, Zhambyl dist.

DOI:

https://doi.org/10.26577//eb.2020.v83.i2.11
        95 46

Abstract

At the moment, there is considerable concern about the spread in the world of epizootics of the highly pathogenic avian influenza virus. Influenza virus has the highest genetic variability and the likelihood of new strains that can create large epidemics. The evolution of the influenza virus proceeds very quickly, therefore, the paramount task of the researchers is antigenic mapping of hemagglutinin subtypes, as well as identifying the characteristics of the antigenic structure. X-ray crystallography is a commonly used method for determining the three-dimensional structure of a protein.

The purpose of these studies was to obtain a recombinant protein of the first hemagglutinin subunit by bacterial expression in Escherichia coli to further determine its three-dimensional structure.

As a result of the research, a plasmid containing the nucleotide sequence of a gene encoding the target protein of the first hemagglutinin subunit was transformed into E. coli cells, strain ER2566. The optimal conditions for the expression of the target gene in E. coli cells, strain ER2566, and purification of the recombinant protein by metal affinity chromatography were worked out. The degree of protein purification was at least 95%. The resulting recombinant protein will be used for further work on crystallography and three-dimensional modeling of the protein.

 Key words: avian influenza virus, hemagglutinin, expression, recombinant protein.

References

1. Swayne D.E., Suarez D.L. (2000) Highly pathogenic avian influenza. Rev. Sci. Tech. 19:463–482.
2. Rohm C, Zhou N, Suss J, Mackenzie J, Webster RG. (1996). Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217:508–516.
3. World Health Organization. Guidelines for laboratory diagnosis and virological surveillance of influenza. World Health Organization, Geneva, Switzerland. https://apps.who.int/iris/bitstream/handle/10665/44518/9789241548090_eng.pdf?sequence=1
4. Lyons D., Lauring A. (2018) Mutation and Epistasis in Influenza Virus Evolution. Viruses, 10: 401-407.
5. Visher E, Whitefield S.E., McCrone J.T., Fitzsimmons W., Lauring A.S. (2016) The Mutational Robustness of Influenza A Virus. PLoS Pathog, 12(8)
6. Swayne D.E., Suarez D.L. (2000) Highly pathogenic avian influenza. Rev. Sci. Tech., 19:463–482.
7. Lvov D.K., Kaverin N.V. (2008) Avian influenza in Northern Eurasia. Monographs in Virology. Vol. 27: Avian Influenza. Basel, Switzerland: Karger; 41—58.
8. Kaverin N.V., Rudneva I.A., Timofeeeva T.A., Ignat‘eva A.V. (2012) Antigenic structure of influenza A virus hemagglutinin. Voprosy virusologii. Suppl. 1:148—58.
9. Skehel J.J., Wiley D.C. (2000). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569.
10. Air GM. (1981). Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc Natl Acad Sci, 78:7639–7643.
11. Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C., Wilson I.A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 312:404–410
12. Khurana S, Verma S, Verma N, Crevar CJ, Carter D.M, Manischewitz J, King L.R, Ross T.M, Golding H. (2011) Bacterial HA1 vaccine against pandemic H5N1 influenza virus: evidence of oligomeriza-tion, hemagglutination, and crossprotective immunity in ferrets. J. Virol., 85:1246–1256.
13. Harper S et al. (2002). Influenza. Clinics in Laboratory Medicine, 22(4):863–882.
14. H Kido, Y Yokogoshi, K Sakai, M Tashiro, Y Kishino, A Fukutomi and N Katunuma (1992) Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J. Biol. Chem., 267:13573-13267.
15. J. J. Skehel, D. C. Wiley, (2000) Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin Annu. Rev. Biochem., 69:520-531
16. Nelson M.I, Holmes E.C. (2007) The evolution of epidemic influenza. Nat Rev Genet., 8:196–205.
17. Nobusawa E, Sato K. (2006) Comparison of the mutation rates of human influenza A and B viruses. J Virol., 80:3675–3678.
18. Hjol'te H.-D., Zippl' V., Ron'jan D., Fol'kers G. (2005) Molekuljarnoe modelirovanie [Molecular modeling]. Teorija i praktika. Laboratorija znanij [in Russian]
19. Levinthal C., (1966) Molecular Model-Building by Computer. Scientific American., 214:42–52
20. Levitt M., (2001) The birth of computational structural biology, Nat. Struct. Biol., 8:392–393
21. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. (2008) Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res., 81(2):132-140.
22. R.U. Kadama, I.A. Wilson. (2017) Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci., 114 (19):4848-4850
23. Faix J., (2006) Grosse R. Staying in shape with formins. Dev. Cell.,10:.693—706
24. Bolanos-Garcia V. M., Chayen N. E. (2009) New directions in conventional methods of protein crystallization. Prog. Biophys. Mol. Biol., 101:1203–1210.
25. Chayen N. E., Saridakis E., Sear R. P. (2006) Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl. Acad. Sci. U.S.A, 103:597–601
26. Boyko K.M., Popov V.O., Kovalchuk M.V. (2015) Promising approaches to crystallization of macromolecules suppressing the convective mass transport to the growing crystal. Russ. Chem. Rev, 84 (8):853-859.
27. Russo Krauss I. et al. (2013) An overview of biological macromolecule crystallization. Int. J. Mol. Sci, 14(6):11643–11691.
28. E.D. Burashev, A.U. Isabek, K.T. Sultankulova, N.T. (2019) Sandybaev Sozdanie vektornoj konstrukcii i bakterial'naja jekspressija pervoj subedinicy gemaggljutinina [Creation of a vector construct and bacterial expression of the first subunit of hemagglutinin] Vestnik SemGU, 3(87):204-208. [in Russian]
29. Hochuli E. Bannwarth E., Hochuli W., Dobeli H., Gentz R., Stuber D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsor-bent Biotechnology, 6:321–1325.
30. Wei C, Nurul T, Wahida AG, Shaharum S. (2014) Construction and heterologous expression of a truncated haemagglutinin (HA) protein from the avian influenza virus H5N1 in Escherichia coli. Trop. Biomed. 31:1–10.

Downloads

How to Cite

Issabek, A. U., Sadikalieva, S. O., Burashev, E. D., Chervyakova, O. V., Kassenov, M. M., & Sultankulova, K. T. (2020). Obtaining protein preparations of the first subunit of hemagglutinin influenza virus. Experimental Biology, 83(2), 105–112. https://doi.org/10.26577//eb.2020.v83.i2.11

Most read articles by the same author(s)