Study of antimicrobial activity of iodine coordination complexes against multidrug resistant bacteria
DOI:
https://doi.org/10.26577/eb-2018-1-1322Abstract
Nowadays in spite of increasing quantity of antimicrobial drugs in pharmaceutical market antibiotic resistance has become a global social and medical problem. Due to this fact the significance of new antibiotic-free drugs production and development for infectious diseases treatment caused by multiple resistant microorganisms has moved upward.
Halogens provide bactericidal properties against Gram-positive and Gram-negative bacteria and also increase the lipophilicity of the drugs which leads to its light passage through biomembranes. The creation of complexes of organic compounds with halogens leads to the appearance of new bioactivities or a noticeable strengthening of the existing ones.
The aim of this study was the investigation and screening of antimicrobial activity of original coordination complexes against multidrug resistant microorganisms for determination of the most effective antimicrobial agents. Original coordination compounds were obtained by the complexing reaction between lithium, potassium, iodine ions and organic ligands. As the test strains Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa microorganisms were used in this study.
As a part of study, from 8 study samples of complexes it was found 3 coordination compounds that showed the highest antimicrobial effect against multidrug resistant strains.
Obtained results provide perspective for further study in future production of antimicrobial drugs which would not cause the resistance of microorganisms and could be used for existing multidrug resistant strains.
Key words: iodine coordination complexes, antimicrobial activity, multidrug resistant microorganisms.
References
2 Aminzadeh Z., Sadat Kashi M., Shabani M. Bacteriuria by extended-spectrum Beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: isolates in a governmental hospital in South of Tehran, Iran // Iranian Journal of Kidney Diseases. – 2008. - Vol. 2, No 4. - P. 197–200. PMID: 19377237.
3 Bashar H. The antibiotics market // Nat Rev Drug Discov. – 2010. - Vol. 9, No 9. - P. 675–676. doi: 10.1038/nrd3267.
4 Bloomfield S.F. Chlorine and iodine formulations // Handbook of disinfectants and antiseptics. – P. 133–158.
5 Cantón R., Bryan J. Global antimicrobial resistance: from surveillance to stewardship. Part 1: surveillance and risk factors for resistance // Expert Review of Anti-Infective Therapy. – 2012. - Vol. 10, No 11. - P. 1269–1271. doi: 10.1586/eri.12.120.
6 Cholley P., Thouverez M., Hocquet D., van der Mee-Marquet N., Talon D., Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types // J Clin Microbiol. – 2011. - Vol. 49, No 7. - P. 2578–2583. doi: 10.1128/JCM.00102-11.
7 Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing, 26th ed. CLSI supplement M100S (ISBN 1-56238-923-8 [Print]; ISBN 1-56238- 924-6 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2016.
8 Feldman C., Anderson R. Antibiotic resistance of pathogens causing community-acquired pneumonia // Semin Respir Crit Care Med. – 2012. - Vol. 33, No 3. - P. 232–243. doi: 10.1055/s-0032-1315635.
9 Gaynes R., Edwards J.R. Overview of nosocomial infections caused by Gram-negative bacilli // Clin. Infect. Dis. – 2005. - Vol. 41, No 6. – P. 848–854. doi: 10.1086/432803.
10 Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. - Virtual press conference. - 2017. - (http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/).
11 Gouriprasanna R., Munirathinam N., Mugesh G. Interaction of anti-thyroid drugs with iodine: the isolation of two unusual ionic compounds derived from Semethimazole // Org. Biomol. Chem. – 2006. - Vol. 4, No 15. - P. 2883–2887. doi: 10.1039/b604060h.
12 Gutierrez J., Hossam A., Lazarezcu R., et al. Effect of beta blockers on sepsis outcome // Med Sci Monit. – 2009. - Vol. 15, No 10. - P. 499–503. PMID: 19789508.
13 Hirsch E.B., Vincent H.T. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes // Expert Rev Pharmacoecon Outcomes Res. – 2010. - Vol. 10, No 4. - P. 441–451. doi: 10.1586/erp.10.49.
14 Hotchkiss R.S., Karl I.E. The pathophysiology and treatment of sepsis // N Engl J Med. – 2003. - Vol. 348, No 2. - P. 138–150. doi: 10.1056/NEJMra021333.
15 Iwamoto M., Mu Y., Lynfield R., Bulens S.N., Nadle J., Aragon D., Petit S., Ray S.M., Harrison L.H., Dumyati G., Townes J.M., Schaffner W., Gorwitz R.J., Lessa F.C. Trends in invasive methicillin-resistant Staphylococcus aureus infections // Pediatrics. – 2013. - Vol. 132, No 4. - P. 817–824. doi: 10.1542/peds.2013-1112.
16 Klevens R.M., Morrison M.A., Nadle J., Petit S., Gershman K., Ray S., Harrison L.H., Lynfield R., Dumyati G., Townes J.M., Craig A.S., Zell E.R., Fosheim G.E., McDougal L.K., Carey R.B., Fridkin S.K. Active bacterial core surveillance (ABCs) MRSA investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States // Journal of the American Medical Association. – 2007. - Vol. 298, No 15. - P. 1763–1771. doi: 10.1001/jama.298.15.1763.
17 Ludwig E., Bonanni P., Rohde G., Sayiner A., Torres A. The remaining challenges of pneumococcal disease in adults // Eur Respir Rev. – 2012. - Vol. 21, No 123. - P. 57–65. doi: 10.1183/09059180.00008911.
18 Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance // Clin Microbiol Infect. – 2012. - Vol. 18, No 3. - P. 268–281. doi: 10.1111/j.1469-0691.2011.03570.x.
19 Master R.N., Clark R.B., Karlowsky J.A., Ramirez J., Bordon J.M. Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009 // Int J Antimicrob Agents. – 2011. - Vol. 38, No 4. – P. 291–295. doi: 10.1016/j.ijantimicag.2011.04.022.
20 Mehndiratta P.L., Gur R., Saini S., et al. Staphylococcus aureus phage types and their correlation to antibiotic resistance // Indian Journal of Pathology and Microbiology. – 2010. - Vol. 53, No 4. - P. 738–741. doi: 10.4103/0377-4929.72065.
21 Mehrgan H., Rahbar M. Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran // International Journal of Antimicrobial Agents. – 2008. - Vol. 31, No 2. - P. 147–151. doi: 10.1016/j.ijantimicag.2007.09.008.
22 Monnet D.L. Antibiotic development and the changing role of the pharmaceutical industry / Monnet D.L. // The global threat of antibiotic resistance. A multidisciplinary meeting at the Dag Hammarskjo Foundation. Uppsala, Sweden. - 2004.
(https://www.dhf.uu.se/antibiotics_participant/new_pdf/Industry.pdf).
23 Monnet D.L. Antibiotic development and the changing role of the pharmaceutical industry // International Journal of Risk & Safety in Medicine. – 2005. - Vol. 17. - P. 133–145.
24 Paterson D.L. Extended-spectrum beta-lactamases: a clinical update // Clinical Microbiology Reviews. – 2005. - Vol.18, No 4. - P. 657–686. doi: 10.1128/CMR.18.4.657-686.2005.
25 Power E. Impact of antibiotic restrictions: the pharmaceutical perspective // Clinical Microbiology and Infection. – 2006. - Vol. 12. - P. 25–34. doi: 10.1111/j.1469-0691.2006.01528.x.
26 Singh V. Antimicrobial resistance // Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. – 2013. - P. 291–296.
27 Taylor G.R., Butler M.A. Comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine // The Journal of Hygiene. – 1982. - Vol. 89, No 2. – P. 321–328. PMID: 6290566.
28 Гостев В.В., Сидоренко С.В. Метициллинрезистентные золотистые стафилококки: проблема распространения в мире и россии // Фарматека. – 2015. - № 6. – С.30-38.
29 Бекешева К.Б., Курманалиева А.Р., Баринов Д.В., Устенова Г.О. Современное состояние и перспективы применения иодсодержащих препаратов // Медицина. – 2015. - №12 (162). – C. 123-125.
30 Калыкова А.С. Разработка новых лекарственных средств на основе субстанции ФС-1 и их стандартизация : дис. док. PhD : 6D074800 : защищена 30.11.15 / Калыкова Асем Сериковна. – А., 2015. – 164 с. – Библиогр.: с. 12–18. – 615.31.012.07.
References
1. Akortha E.E., Ibadin O.K. (2008) Incidence and antibiotic susceptibility pattern of Staphylococcus aureus amongst patients with urinary tract infection (UTIS) in UBTH Benin City, Nigeria. African Journal of Biotechnology, vol. 10, no 11, pp. 1637–1640, doi: 10.5897/AJB08.176.
2. Aminzadeh Z., Sadat Kashi M., Shabani M. (2008) Bacteriuria by extended-spectrum Beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: isolates in a governmental hospital in South of Tehran, Iran. Iranian Journal of Kidney Diseases, vol. 2, no 4, pp. 197–200, PMID: 19377237
3. Bashar H. (2010) The antibiotics market. Nat Rev Drug Discov., vol. 9, no 9, pp. 675-676, doi: 10.1038/nrd3267.
4. Bekesheva K., Kurmanaliyeva A., Barinov D., Ustegenova G. (2015) Sovremennoe sostoyanie i perspectivy primeneniya iodsoderzhaschih preparatov [The contemporary state and prospects of of iodine-containing drugs treatment]. Medicina (Medicine), no. 12, pp. 123-125, doi: 615.777.12/.453.6:004.14.
5. Bloomfield S.F. (1996) Chlorine and iodine formulations, In: Ascenzi J M, editor. Handbook of disinfectants and antiseptics. (New York, N.Y: Marcel Dekker, Inc., 1996), pp. 133–158.
6. Cantón R., Bryan J. (2012) Global antimicrobial resistance: from surveillance to stewardship. Part 1: surveillance and risk factors for resistance. Expert Review of Anti-Infective Therapy, vol. 10, no 11, pp. 1269–1271, doi: 10.1586/eri.12.120.
7. Cholley P., Thouverez M., Hocquet D., van der Mee-Marquet N., Talon D., Bertrand X. (2011) Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol, vol. 49, no 7, pp. 2578–2583, doi: 10.1128/JCM.00102-11.
8. Clinical and Laboratory Standards Institute (CLSI) (2016) Performance Standards for Antimicrobial Susceptibility Testing, 26th ed. CLSI supplement M100S (ISBN 1-56238-923-8 [Print]; ISBN 1-56238- 924-6 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA.
9. Feldman C., Anderson R. (2012) Antibiotic resistance of pathogens causing community-acquired pneumonia. Semin Respir Crit Care Med., vol. 33, no 3, pp. 232–243, doi: 10.1055/s-0032-1315635.
10. Gaynes R., Edwards J.R. (2005) Overview of nosocomial infections caused by Gram-negative bacilli. Clin. Infect. Dis., vol. 41, no 6, pp. 848-854, doi: 10.1086/432803.
11. “Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics,” Virtual press conference, 27 February 2017, http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/.
12. Gostev V., Sidorenko S. (2015) Meticillinrezistentnye zolotistye staphylococci: problema rasprostraneniya v mire i Rossii [Methicillin-resistant Staphylococcus aureus: the problem of expansion in the world and in Russia]. Pharmateka (Pharmateca), no 6, pp. 30-38.
13. Gouriprasanna R., Munirathinam N., Mugesh G. (2006) Interaction of anti-thyroid drugs with iodine: the isolation of two unusual ionic compounds derived from Semethimazole. Org. Biomol. Chem., vol. 4, no 15, pp. 2883-2887, doi: 10.1039/b604060h.
14. Gutierrez J., Hossam A., Lazarezcu R., et al. (2009) Effect of beta blockers on sepsis outcome. Med Sci Monit., vol. 15, no 10, pp. 499–503, PMID: 19789508.
15. Hirsch E.B., Vincent H.T. (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res., vol. 10, no 4, pp. 441-451, doi: 10.1586/erp.10.49.
16. Hotchkiss R.S., Karl I.E. (2003) The pathophysiology and treatment of sepsis. N Engl J Med., vol. 348, no 2, pp. 138–150, doi: 10.1056/NEJMra021333.
17. Iwamoto M., Mu Y., Lynfield R., Bulens S.N., Nadle J., Aragon D., Petit S., Ray S.M., Harrison L.H., Dumyati G., Townes J.M., Schaffner W., Gorwitz R.J., Lessa F.C. (2013) Trends in invasive methicillin-resistant Staphylococcus aureus infections. Pediatrics, vol. 132, no 4, pp. 817–824, doi: 10.1542/peds.2013-1112.
18. Kalykova A.S. Development of new pharmaceuticals on the basis of FS-1 substance and their standardization (PhD diss., Kazakh National Medical University, 2015), рр.12-18.
19. Klevens R.M., Morrison M.A., Nadle J., Petit S., Gershman K., Ray S., Harrison L.H., Lynfield R., Dumyati G., Townes J.M., Craig A.S., Zell E.R., Fosheim G.E., McDougal L.K., Carey R.B., Fridkin S.K. (2007) Active bacterial core surveillance (ABCs) MRSA investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical Association, vol. 298, no 15, pp. 1763–1771, doi: 10.1001/jama.298.15.1763.
20. Ludwig E., Bonanni P., Rohde G., Sayiner A., Torres A. (2012) The remaining challenges of pneumococcal disease in adults. Eur Respir Rev., vol. 21, no 123, pp. 57-65, doi: 10.1183/09059180.00008911.
21. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T, Monnet D.L. (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect., vol. 18, no 3, pp. 268–281, doi: 10.1111/j.1469-0691.2011.03570.x.
22. Master R.N., Clark R.B., Karlowsky J.A., Ramirez J., Bordon J.M. (2011) Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009. Int J Antimicrob Agents., vol. 38, no 4, pp. 291-295, doi: 10.1016/j.ijantimicag.2011.04.022.
23. Mehndiratta P.L., Gur R., Saini S., et al. (2010) Staphylococcus aureus phage types and their correlation to antibiotic resistance. Indian Journal of Pathology and Microbiology, vol. 53, no 4, pp. 738–741, doi: 10.4103/0377-4929.72065.
24. Mehrgan H., Rahbar M. (2008) Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli in a tertiary care hospital in Tehran, Iran. International Journal of Antimicrobial Agents, vol. 31, no 2, pp. 147–151, doi: 10.1016/j.ijantimicag.2007.09.008.
25. Monnet D.L. (2004) Antibiotic development and the changing role of the pharmaceutical industry. The global threat of antibiotic resistance. A multidisciplinary meeting at the Dag Hammarskjo Foundation. Uppsala, Sweden, https://www.dhf.uu.se/antibiotics_participant/new_pdf/Industry.pdf.
26. Monnet D.L. (2005) Antibiotic development and the changing role of the pharmaceutical industry. International Journal of Risk & Safety in Medicine, vol. 17, pp. 133–145.
27. Paterson D.L. (2005) Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews, vol.18, no 4, pp. 657–686, doi: 10.1128/CMR.18.4.657-686.2005.
28. Power E. (2006) Impact of antibiotic restrictions: the pharmaceutical perspective. Clinical Microbiology and Infection, vol. 12, pp. 25-34, doi: 10.1111/j.1469-0691.2006.01528.x.
29. Singh V. (2013) Antimicrobial resistance. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, pp. 291–296.
30. Taylor G.R., Butler M. (1982) A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine. The Journal of Hygiene, vol. 89, no 2, pp. 321–328, PMID: 6290566.