Assessment of the genetic diversity of durum wheat cultivars (Triticum durum Desf.) using microsatellite markers
DOI:
https://doi.org/10.26577/eb-2018-1-1318Abstract
Durum wheat (Triticum durum Desf.) is an important crop both in the world and in Kazakhstan. Durum wheat is used as a valuable raw material in bakery and pasta production. Effective breeding strategies require knowledge of the genetic diversity level of cultivars. Polymorphism of the twenty-nine durum cultivars was analyzed using 7 microsatellite markers. The total number of alleles was 20 and the effective allele number was an average of 2.8. The average polymorphic information content (PIC) value was 0.3658 and ranged from 0.1267 in Xgwm219 to 0.5457 in Xgwm247. The genetic diversity indices of Shannon and Nei were equal to 0.7174, 0.4243, respectively. The level of genetic diversity was relatively high. The genetic distance between cultivars was calculated. Also, with the help of microsatellite markers, a cluster analysis of the studied cultivars was conducted. The results of the study make it possible to assess the level of genetic polymorphism in the studied cultivars and indicate that the used markers are informative. Polymorphic markers were selected for the following studies on the durum genetic diversity. The obtained information will be used in breeding programs aimed at increasing yield and adaptability of durum wheat.
Key words: Triticum durum, genetic resources, genetic diversity, microsatellites, SSR.
References
2 Botstein D., White R.L., Skolnik M., Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms // Am J Hum Genet. – 1980. - Vol. 32, No 3. - P. 314–331.
3 Dellaporta S. L., Wood J., Hicks J. B. A Plant DNA Minipreparation: Version II // Plant Molecular Biology Reporter. – 1983. - Vol. 1, No 4. -P. 19–21.
4 Geng H., Xia Xi., Zhang L., Qu Ya., He Zh. Development of Functional Markers for a Lipoxygenase Gene TaLox-B1 on Chromosome 4BS in Common Wheat // Crop science. – 2011. - Vol. 52, No. 2. - P. 568–576. doi:10.2135/cropsci2011.07.0365.
5 Golabadi M., Arzani A., Mirmohammadi Maibody S.A.M, Sayed Tabatabaei B. E., Mohammadi S. A. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat // Euphytica. – 2011. - Vol. 177, No 2. – P. 207–221. doi: 10.1007/s10681-010-0242-8.
6 Guyomarc’h H., Sourdille P., Charmet G., Edwards K.J., Bernard M. Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat // Theor Appl Genet. – 2002. - Vol.104. - P. 1164–1172.
7 Henkrar F., El-Haddoury J., Ouabbou H., Nsarellah N., Iraqi D., Bendaou N., Mahabala U.S. Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers // Sci. Agric. – 2016. - Vol.73, No 2. – P. 134–141. doi: 10.1590/0103-9016-2015-0054.
8 Kabbaj H., Sall A.T., Al-Abdallat A., Geleta M., Amri A., Filali-Maltouf A., Belkadi B., Ortiz R., Bassi F.M. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange // Front Plant Sci. – 2017. - Vol. 8, No 1277.
9 Kudriavtsev A.M., Martynov S.P., Brodzhno M., Pukhal'skiĭ V.A. Evaluation of the relevance of using RAPD-analysis for revealing the phylogenic connections between cultivars of durum wheat (T. durum Desf.) // Genetika. – 2003. - Vol. 39, No 9. - P. 1237-46.
10 Kudryavtsev A., Martynov S., Broggio M., Buiatti M. Evaluation of Polymorphism at Microsatellite Loci of Spring Durum Wheat (Triticum durum Desf.) Varieties and the Use of SSR-Based Analysis in Phylogenetic Studies // Russian Journal of Genetics. – 2004. - Vol. 40, No. 10. - P. 1102–1110.
11 Li W., Zhang B., Li R., Chang Xi., Jing R. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat // PLoS One. – 2015. - Vol. 10, No 3. - P. 1–15. doi: 10.1371/journal.pone.0119438.
12 Maccaferri M., Sanguineti M. C., Donini P., Tuberosa R. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm // Theor Appl Genet. – 2003. - Vol. 107. - P. 783–797. doi: 10.1007/s00122-003-1319-8.
13 Marzario S., Gioia T., Logozzo G., Spagnoletti Zeuli P.L. Evaluation of Triticum durum Desf. germplasm for the improvement of local products // Proceedings of the International Symposium on Genetics and breeding of durum wheat. Options Méditerranéennes. – 2014. - No 110. - P. 571-575.
14 Medini M., Hamza S., Rebai A., Baum M. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers // Genetic Resources and Crop Evolution. – 2005. - Vol. 52, No 1. - P. 21–31. doi: 10.1007/s10722-005-0225-0.
15 Melloul M., Iraqi D., El Alaoui M., Erba G., Alaoui S., Ibriz M., Elfahime E. Identification of Differentially Expressed Genes by cDNA-AFLP Technique in Response to Drought Stress in Triticum durum // Food Technol Biotechnol. – 2014. - Vol. 52, No 4. - P. 479-788. doi: 10.17113/ftb.52.04.14.3701.
16 Mohler V., Bauer C., Schweizer G., Kemp H., Hart L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer // J Appl Genet. – 2013. - Vol. 54, No 3. - P. 259–63. doi: 10.1007/s13353-013-0158-9.
17 Pasqualone A., Lotti C., Blanco A. Identification of durum wheat cultivars and monovarietal semolinas by analysis of DNA microsatellites // Eur Food Res Technol. – 1999. - Vol. 210, No 2. - P. 144–147. doi: 10.1007/s002170050551.
18 Qureshi N., Bariana H., Kumran V.V., Muruga S., Forrest K.L., Hayden M.J., Bansal U. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582 // Theor Appl Genet. – 2018. doi: 10.1007/s00122-018-3060-3.
19 Roder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. Microsatellite Map of Wheat // Genetics. – 1998. - Vol. 149, No 4. - P. 2007–2023.
20 Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees // Mol Biol Evol. – 1987. - Vol. 4, No 4. - P. 406-25. doi: 10.1093/oxfordjournals.molbev.a040454.
21 Sukumaran S., Reynolds M.P., Sansaloni C. Genome-Wide Association Analyses Identify QTL Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield Potential, Drought, and Heat Stress Environments // Front. Plant Sci. – 2018. - Vol. 9, No 81.
22 Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 // Mol Biol Evol. – 2013. - Vol. 30, No 12. - P. 2725–2729.
23 Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers // Nucleic Acids Res. – 1989. - Vol. 17, No 16. - P. 6463–6471.
24 Tester M., Langridge P. Breeding Technologies to Increase Crop Production in a Changing World // Science. – 2010. - Vol. 327, No 5967. - P. 818-822. doi: 10.1126/science.1183700.
25 Vieira M.L.C., Santini L., Diniz A.L., Munhoz C. Microsatellite markers: what they mean and why they are so useful // Genetics and Molecular Biology. – 2016. - Vol. 39, No 3. - P. 312-328. doi: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0027.
26 Yeh F.C., Yang R.C., Boyle T.B.J., Ye Z.H., Mao J.X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Alberta, Canada. – 1997.
27 Yildirim A., Sönmezoğlu Öz., Gökmen S., Kandemir N., Aydin N. Determination of genetic diversity among Turkish durum wheat landraces by microsatellites // African Journal of Biotechnology. – 2011. - Vol. 10, No 19. - P. 3915-3920. doi: 10.5897/AJB10.2240.
28 Zaïm M., El Hassouni Kh., Gamba F., Filali-Maltouf A., Belkadi B., Sourour A., Amri A., Nachit M., Taghouti M., Bassi F.M. Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites // Field Crops Research. – 2017. - Vol. 214. - P. 219-227.
29 Zhang B., Shi W., Li W., Chang Xi., Jing R. Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat // Mol Breeding. – 2013. -Vol. 32. - P. 327–338. doi: 10.1007/s11032-013-9873-5.
30 Абугалиева С.И., Волкова Л.А., Ермекбаев К.А., Туруспеков Е.К. Генотипирование коммерческих сортов яровой мягкой пшеницы Казахстана с использованием микросателлитных ДНК-маркеров // Биотехнология. Теория и практика. – 2012. - № 2. - C. 35-45. doi: 10.11134/btp.2.2012.4.
References
1. Abugalieva S., Volkova L., Yermekbayev K., Turuspekov Ye. (2012) Genotipirovaniye kommercheskikh sortov yarovoy myagkoy pshenitsy Kazakhstana s ispol'zovaniyem mikrosatellitnykh DNK-markerov [Genotyping of commercial spring wheat cultivars from Kazakhstan based on use of DNA microsatellite markers]. Biotekhnologiya. Teoriya i praktika. (Biotechnology. Theory and Practice), no 2, pp. 35–45. doi: 10.11134/btp.2.2012.4.
2. Ahmet Y., Sönmezoğlu Öz., Gökmen S., Kandemir N., Aydin N. (2011) Determination of genetic diversity among Turkish durum wheat landraces by microsatellites. African Journal of Biotechnology, vol. 10, no 19, pp. 3915-3920, doi: 10.5897/AJB10.2240.
3. Ashe P., Shaterian H., Akhov L., Kulkarni M., Selvaraj G. (2017) Contrasting Root and Photosynthesis Traits in a Large-Acreage Canadian Durum Variety and Its Distant Parent of Algerian Origin for Assembling Drought/Heat Tolerance Attributes. Front Chem., vol. 5, no 121, doi: 10.3389/fchem.2017.00121.
4. Botstein D., White R.L., Skolnik M., Davis R.W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet., vol. 32, no 3, pp. 314–331.
5. Dellaporta S. L., Wood J., Hicks J.B. (1983) A Plant DNA Minipreparation: Version II. Plant Molecular Biology Reporter, vol. 1, no 4, pp. 19–21.
6. Geng H., Xia Xi., Zhang L., Qu Y., He Zh. (2011) Development of Functional Markers for a Lipoxygenase Gene TaLox-B1 on Chromosome 4BS in Common Wheat. Crop science, vol. 52, no. 2, pp. 568–576, doi:10.2135/cropsci2011.07.0365.
7. Golabadi M., Arzani A., Mirmohammadi Maibody S. A. M, Sayed Tabatabaei B. E., Mohammadi S. (2011) A. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica, vol. 177, no 2, pp 207–221, doi: 10.1007/s10681-010-0242-8.
8. Guyomarc’h H., Sourdille P., Charmet G., Edwards K.J., Bernard M. (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet, vol.104, pp. 1164–1172.
9. Henkrar F., El-Haddoury J., Ouabbou H., Nsarellah N., Iraqi D., Bendaou N., Mahabala U.S. (2016) Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci. Agric., vol.73, no 2, pp.134–141, doi: 10.1590/0103-9016-2015-0054.
10. Kabbaj H., Sall A. T., Al-Abdallat A., Geleta M., Amri A., Filali-Maltouf A., Belkadi B., Ortiz R., Bassi F. M. (2017) Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front Plant Sci., vol. 8, article 1277.
11. Kudriavtsev A.M., Martynov S.P., Brodzhno M., Pukhal'skiĭ V.A. (2003) Evaluation of the relevance of using RAPD-analysis for revealing the phylogenic connections between cultivars of durum wheat (T. durum Desf.). Genetika, vol. 39, no 9, pp. 1237-46.
12. Kudryavtsev A.M., Martynov S.P., Broggio M., Buiatti M. (2004) Evaluation of Polymorphism at Microsatellite Loci of Spring Durum Wheat (Triticum durum Desf.) Varieties and the Use of SSR-Based Analysis in Phylogenetic Studies. Russian Journal of Genetics, vol. 40, no. 10, pp. 1102–1110.
13. Li W., Zhang B., Li R., Chang Xi., Jing R. (2015) Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat. PLoS One, vol. 10, no 3, pp. 1–15. doi: 10.1371/journal.pone.0119438.
14. Maccaferri M., Sanguineti M. C., Donini P., Tuberosa R. (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet., vol. 107, pp. 783–797, doi: 10.1007/s00122-003-1319-8.
15. Marzario S., Gioia T., Logozzo G., Spagnoletti Zeuli P.L. (2014) Evaluation of Triticum durum Desf. germplasm for the improvement of local products. Proceedings of the International Symposium on Genetics and breeding of durum wheat. Options Méditerranéennes., no 110., pp. 571-575.
16. Medini M., Hamza S., Rebai A., Baum M. (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genetic Resources and Crop Evolution, vol. 52, no 1, pp. 21–31, doi: 10.1007/s10722-005-0225-0.
17. Melloul M., Iraqi D., El Alaoui M., Erba G., Alaoui S., Ibriz M., Elfahime E. (2014) Identification of Differentially Expressed Genes by cDNA-AFLP Technique in Response to Drought Stress in Triticum durum. Food Technol Biotechnol., vol. 52, no 4, pp.479-788, doi: 10.17113/ftb.52.04.14.3701.
18. Mohler V., Bauer C., Schweizer G., Kemp H., Hart L. (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet., vol. 54, no 3, pp. 259–63, doi: 10.1007/s13353-013-0158-9.
19. Pasqualone A., Lotti C., Blanco A. (1999) Identification of durum wheat cultivars and monovarietal semolinas by analysis of DNA microsatellites. Eur Food Res Technol., vol. 210, no 2, pp. 144–147, doi: 10.1007/s002170050551.
20. Qureshi N., Bariana H., Kumran V.V., Muruga S., Forrest K.L., Hayden M.J., Bansal U. (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet., doi: 10.1007/s00122-018-3060-3.
21. Roder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. (1998) Microsatellite Map of Wheat. Genetics, vol. 149, no 4, pp. 2007–2023.
22. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol., vol. 4, no 4. pp. 406-25, doi: 10.1093/oxfordjournals.molbev.a040454.
23. Sukumaran S., Reynolds M.P., Sansaloni C. (2018) Genome-Wide Association Analyses Identify QTL Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield Potential, Drought, and Heat Stress Environments. Front. Plant Sci., vol. 9, no 81.
24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol., vol. 30, no 12, pp. 2725–2729.
25. Tautz D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., vol. 17, no 16, pp. 6463–6471.
26. Tester M., Langridge P. (2010) Breeding Technologies to Increase Crop Production in a Changing World. Science, vol. 327, no 5967, pp. 818-822, doi: 10.1126/science.1183700.
27. Vieira M.L.C., Santini L., Diniz A.L., Munhoz C. (2016) Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, vol. 39, no 3, pp. 312-328, doi: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0027.
28. Yeh F.C., Yang R.C., Boyle T.B.J., Ye Z.H., Mao J.X. (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Alberta, Canada.
29. Zaïm M., El Hassouni Kh., Gamba F., Filali-Maltouf A., Belkadi B., Sourour A., Amri A., Nachit M., Taghouti M., Bassi F.M. (2017) Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites. Field Crops Research, vol. 214, pp. 219-227.
30. Zhang B., Shi W., Li W., Chang Xi., Jing R. (2013) Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat. Mol Breeding, vol. 32, pp. 327–338, doi: 10.1007/s11032-013-9873-5.