Selection of the optimal culture conditions for high biomass synthesis by Trametes versicolor

Authors

  • K. G. Mustafin Almaty university of power engineering & telecommunications, Kazakhstan, Almaty
  • N. N. Ahmetsadykov LLP "Аntigen", Kazakhstan, Almaty
  • N. A. Bisko Institute of Botany named after N.G. Kholodny, Ukraine, Kiev
  • Zh. B. Suleimenovа LLP "Аntigen", Kazakhstan, Almaty
  • Zh. B. Narmuratova LLP "Аntigen", Kazakhstan, Almaty
  • Zh. K. Saduyeva LLP "Аntigen", Kazakhstan, Almaty
        156 47

Keywords:

Trametes versicolor, biologically active compounds, biomass, submerged cultivation, fungi.

Abstract

Higher Basidiomycetes mushrooms are currently of interest because they are a rich source of various bioactive natural products. Mushrooms such as Ganoderma lucidum (Reishi), Lentinus edodes (Shiitake), Inonotus obliquus (Chaga), Trametes versicolor and many others have been collected and used for hundreds of years in Korea, China, Japan, and eastern Russia. In the case of the fungi of concern to this paper T. versicolor, commonly often called the "turkey tail", is a fungus which has been widely used through the centuries for the general promotion of health and longevity in Asian countries. T. versicolor has a long history of medical use, dating back hundreds of years. Subsequent research led to identification of two closely related proteoglycan constituents of T. versicolor with anticancer activity: Krestin (PSK) and polysaccharide peptide (PSP). Krestin (PSK) has been studied most extensively and is in wide clinical use as an adjunctive and adjuvant cancer therapy in Japan and China. This is a fungus which has been known to have numerous pharmacological effects including immunomodulating, anti-inflammatory, anti-cancer, anti-diabetic, anti-oxidative, radical-scavenging, and anti-aging effects. For most substances, fungal biomass obtained by submerged cultivation has higher nutritional value. The culture media in which mycelium grows is made of chemically pure and ecologically clean substances. In present study optimal culture conditions (composition of culture medium, temperature, pH, oxygen dissolution rate) for increased biomass synthesis in submerged culture have been studied. The objects of research work were strains of the fungus T. versicolor 353, 5095, 5131 used from the collection of mushrooms of the Institute of Botany named after N.G. Kholodny of the National Academy of Sciences of Ukraine. Investigation of the tested strains growth on nutrient media with different carbon and nitrogen sources revealed that the most appropriate source of nitrogen for all strains was peptone and the carbon – glucose. It was found that among all of strains tested the T. versicolor 353 is perspective strain for biomass and exopolysaccharides production when cultivated on glucose-peptone-yeast medium. The optimal ratio in production liquid medium C/N = 26,6. Under these conditions, strain T. versicolor 353 strain is able to synthesize in glucose -peptone-yeast medium up to 11.6 g / l of biomass. The optimal parameters of submerged cultivation of T. versicolor 353 strain for maximal accumulation of fungal biomass are as follows: temperature 30,0 ± 1,0 ° C, pH 5.0 ± 0.5, the oxygen dissolution rate (g О2 / l.h) - 0.55.

References

Литература

1 Беккер З.И. Физиология и биохимия грибов. М.: Изд-во МГУ. - 1988. - С. 277.
2 Белова Н.В. Перспективы использования биологически активных соединений высших базидиомицетов в России // Микология и фитопатология. - 2004. - Т. 38. - № 2. - С. 1 - 4.
3 Гарибова Л.В, Сидорова И.И. Грибы // Энциклопедия природы России. М.: Изд-во «ABF», - 1999. - С.352.
4 Гарибова Л.В. Обзор и анализ современных систем грибов. Петрозаводск: Карельский научный центр РАН. -1999. - С.28.
5 Гарибова Л.В. Основы микологии. Морфология и систематика грибов и грибоподобных организмов. -М.: Товарищество научных изданий КМК. - 2005. – С. 207.
6 Феофилова Е.П. Биотехнология мицелиальных грибов: достижения и перспективы развития // Современная микология России. -Тез. докл. I конгр. микологов России. М.: Национальная академия микологии. - 2002. - С. 294-295.
7 Шиврина А.Н., Низовская О.П. Биосинтетическая деятельность высших грибов. М.-Л.: Наука. - 1969. – С. 241.
8 Reshetnicov S.V., Wasser S.P., Tan K.K. International Journal of - Medicinal Mushrooms. - 2001. V. 3. - № 2 - 3. - P. 86.
9 Sliva D. Ganoderma lucidum in cancer research. Leukemia Research. - 2006. - V. 30. - P. 767-768.
10 Автономова A.B., Краснопольская Л.М., Максимов В.Н. Оптимизация состава питательной среды для погруженного культивирования Ganoderma lucidum (Curt.: Fr.) P. Karst // Микробиология. - 2006. – Т. 75. - №2. - С. 186 - 192.
11 Автономова A.B., Белицкий И.В., Исакова Е.Б. и др. Водорастворимые полисахариды мицелия Gano-derma lucidum: биотехнологии получения и противоопухолевые свойства // Успехи медицинской микологии. 2006. - Т. VII. - С. 217 - 219.
12 Краснопольская Л.М. Грибы класса Basidiomycetes — источники лекарственных веществ // Современные проблемы микологии, альгологии и фитопатологии: сборник статей. М.: МГУ ИД «Муравей». - 1998. - С. 230-232.
13 Сидоренко М.Л. Биотехнология трутовика лекарственного // Мат. II Междунар. научно-технич. конф. молод, уч. «Актуальные проблемы технологии живых систем». Владивосток. - 2007. - С. 73-76.
14 Fisher M., Yang LX. Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res. - 2002. -Vol. 22. - P. 1737–1754.
15 Yang QY. Yun Zhi polysaccharopeptide (PSP) and the general aspects of its research // Fung Sci. -1997. - Vol. 12. - P. 1 - 8.
16 Zaidman BZ, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics // Appl Microbiol Biotechnol. - 2005. № 67(4). -P. 453 - 68.
17 Chang S.T. Global impact of edible and medicinal mushrooms on human welfare in the 21st century: nongreen revolution // Int. J. Med. Mushr. - 1999. - № 1. - P. 1 7.
18 Shiao MS. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities and pharmacological functions // Chem. Rec. - 2003. № 3(3). - P. 172-80.
19 Deng Pan et al. Structure characterization of a novel neutral polysaccharide isolated from G. lucidum fruiting bodies // Food Chemistry. - 2012. - Vol. 135. - № 3. - P. 1097–1103.
20 Бухало А.С., Соломко Э.Ф., Пархоменко Л.П., и др. Опыт глубинного выращивания Pleurotus ostrestus (Fr.) Kumm. на комплексных средах // Производство высших съедобных грибов СССР. Киев: Наук. Думка. - 1978. - С. 29-32.
21 Егоров Н.С. Практикум по микробиологии. М.: Из-во МГУ. - 1976. - С.276.

References

1 Bekker ZI (1988) Physiology and biochemistry of fungi [Fiziologija i biohimija gribov] MSU, Moscow, Russia. 277. (In Russian)
2 Belova NV (2004) Prospects for the use of biologically active compounds of higher basidiomycetes in Russia. Mycology and Phytopathology [Perspektivy ispol'zovanija biologicheski aktivnyh soedinenij vysshih bazidiomicetov v Rossii. Mikologija i fitopatologija] 38:2:1-4. (In Russian)
3 Garibova LV, Sidirova II (1988) Mushrooms. Encyclopedia of Russian nature [Griby. Enciklopedija prirody Rossii] ABF, Moscow, Russia. (In Russian)
4 Garibova LV (1999) Review and analysis of modern systems of mushrooms [Obzor i analiz sovremennyh sistem gribov]. Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk. 28. (In Russian)
5 Garibova LV (2005) Fundamentals of mycology. Morphology and taxonomy of fungi and organisms mushroom of similar [Osnovy mikologii. Morfologija i sistematika gribov i gribopodobnyh organizmov]. Association of scientific editions KMK, Moscow, Russia. 207. (In Russian)
6 Feofilova EP (2002) Biotechnology of filamentous fungi : achievements and prospects. Modern Russian mycology. Proc. rep. I stamping. Russian [Biotehnologija micelial'nyh gribov: dostizhenija i perspektivy razvitija. Sovremennaja mikologija Rossii. Tez. dokl. I kongr. mikologov Rossii] The National Academy of Mycology, Moscow, Russia. 294-295. (In Russian)
7 Shivrina AN, Nyzovskaya OP (1969) Biosynthetic activity of higher fungi. [Biosinteticheskaja dejatel'nost' vysshih gribov] Nauka, Moscow-Leningrad. 241. (In Russian)
8 Reshetnicov SV, Wasser SP, Tan KK (2001) International Journal of-Medicinal Mushrooms. 3:86. (In English)
9 Sliva D (2006) Ganoderma lucidum in cancer research. Leukemia Research. 30:767-768. (In English)
10 Avtonomova AB, Krasnopol'skaja LM, Maksimov VN (2006) Optimization of the composition of the culture medium for the cultivation submerged Ganoderma lucidum (Curt .: Fr.) P. Karst. Microbiology [Optimizacija sostava pitatel'noj sredy dlja pogruzhennogo kul'tivirovanija Ganoderma lucidum (Curt.: Fr.) P. Karst. Mikrobiologija] 75(2) 186-192. (In Russian)
11 Avtonomova AB, Belickij IV, Isakova EB et. al. (2006) Water-soluble polysaccharides of mycelium Gano-derma lucidum: Biotechnology preparation and anticancer properties. Advances Medical Mycology [Vodorastvorimye polisaharidy micelija Gano-derma lucidum: biotehnologii poluchenija i protivoopuholevye svojstva. Uspehi medicinskoj mikologii] VII:217-219. (In Russian)
12 Krasnopol'skaja LM (2008) Class Basidiomycetes Mushrooms - sources of drugs . Modern problems of mycology, plant pathology and algology: a collection of articles [Griby klassa Basidiomycetes — istochniki lekarstvennyh veshhestv. Sovremennye problemy mikologii, al'gologii i fitopatologii: sbornik statej] MSU ID «Muravei», Moscow, Russia. 230 - 232. (In Russian)
13 Sidorenko ML (2007) Biotechnology Polypore drug. Mat. II International. scientific and tech. Conf. young, uch. "Actual problems of the technology of living systems" [Biotehnologija trutovika lekarstvennogo. Mat. II Mezhdunar. nauchno-tehnich. konf. molod, uch. «Aktual'nye problemy tehnologii zhivyh sistem»] Vladivostok, Russia. 73-76. (In Russian)
14 Fisher M, Yang LX (2002) Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res. 22:1737–1754. (In English)
15 Yang QY (1997) Yun Zhi polysaccharopeptide (PSP) and the general aspects of its research. Fung Science. 12:1–8. (In English)
16 Zaidman BZ, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol. 67(4):453-468. (In English)
17 Chang ST (1999) Global impact of edible and medicinal mushrooms on human welfare in the 21st century: nongreen revolution. Int. J. Med. Mushr. 1:1 7. (In English)
18 Shiao MS (2012) Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions.Chem. Rec. 3(3):172-180. (In English)
19 Deng Pan et al. (2012) Structure characterization of a novel neutral polysaccharide isolated from G. lucidum fruiting bodies. Food Chemistry, 135(3):1097–1103. (In English)
20 Buhalo AS, Solomko JEF, Parhomenko LP et. al. (1978) Experience deep cultivation Pleurotus ostrestus (Fr.) Kumm. on complex media. Production of higher edible mushrooms of the USSR. [Opyt glubinnogo vyrashhivanija Pleurotus ostrestus (Fr.) Kumm. na kompleksnyh sredah. Proizvodstvo vysshih sedobnyh gribov SSSR] Nauk. Dumka, Kiev. 29-32. (In Russian)
21 Еgorov NS (1976) Workshop on microbiology [Praktikum po microbiology] MSU, Moscow, Russia. 276. (In Russian)

Downloads

How to Cite

Mustafin, K. G., Ahmetsadykov, N. N., Bisko, N. A., Suleimenovа Z. B., Narmuratova, Z. B., & Saduyeva, Z. K. (2016). Selection of the optimal culture conditions for high biomass synthesis by Trametes versicolor. Experimental Biology, 67(2), 150–158. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1190